First series of mixed (PIII, SeIV)-heteroatom-oriented rare-earth-embedded polyoxotungstates containing distinct building blocks

Lulu Liu, Jun Jiang, Xiaoyi Liu, Guoping Liu, Dan Wang, Lijuan Chen* and Junwei Zhao

By a self-assembly reaction strategy accompanying the step-by-step introduction of simple reactants, a series of unprecedented mixed-heteroatom-oriented rare-earth-embedded heteropolyoxometalates [H\textsubscript{2}Ni\textsubscript{3}C\textsubscript{8}H\textsubscript{12}N\textsubscript{2}]RE\textsubscript{3}(H\textsubscript{2}O)\textsubscript{9}(W\textsubscript{4}O\textsubscript{3})\textsubscript{3}(H\textsubscript{4}SeW\textsubscript{15}O\textsubscript{54})\textsubscript{2}·H\textsubscript{2}O (RE = Ce3+ (1), Pr3+ (2), Nd3+ (3), Sm3+ (4), Gd3+ (5), Tb3+ (6), Ho3+ (7), Er3+ (8)) were successfully achieved. It is worth highlighting that their polyoxoanions were synergistically established by two trivacant Keggin SeIV-inserted [\textit{B}-α-\textit{SeW}_{12}O_{38}]8− clusters and one trivacant Dawson PIII-and-SeIV-inserted [H\textsubscript{4}SeW\textsubscript{15}O\textsubscript{54}]10− segment. Significantly, [H\textsubscript{4}SeW\textsubscript{15}O\textsubscript{54}]10− is a rarely reported polyoxometalate (POM) unit and can be viewed as a new member derived from one plenary Dawson PIII-and-SeIV-inserted polyoxoanion by removing three (WO\textsubscript{6}) octahedra in the polar position. Moreover, the composite of 1 and carboxyl-functionalized multi-walled carbon nanotubes (CMWCNTs) was modified onto a glass carbon electrode (GCE) to construct the 1@CMWCNT-GCE electrochemical sensor (ECS). In PBS buffer (pH 7.00), we investigated the electrochemical sensing properties of 1@CMWCNT-GCE ECS toward simultaneously detecting dopamine (DA) and uric acid (UA). The 1@CMWCNT-GCE ECS exhibited good sensing performances toward DA and UA with a low detection limit (1.61 μmol L-1 for DA and 5.41 μmol L-1 for UA) and high stability. This work not only shows that the synergistic interaction of diverse heteroatoms (Has) can facilitate creating captivating structures of POMs, but also promotes the applications of POM-based materials in recognizing bioactive molecules.

Introduction

Being formed by the polymerization of early transition-metal elements in a high oxidation state through bridging oxygen atoms, polyoxometalates (POMs) are considered as a promising subclass of polynuclear metal-oxo clusters and have displayed fascinating structural features and various applications in catalysis, optics, medicine, magnetism, and nanotechnology.1–7 According to the case whether heteroatoms (HAs) (for example, SbIII, SeIV, SV, PV) are included or not in the structures, POMs can be divided into isopolyoxometalates (IPOMs) and heteropolyoxometalates (HPOMs). It has been abundantly proved that HPOMs manifest better structural stability and more wide-ranging application potentials than IPOMs.8–12 Especially, compared with those featuring the tetrahedral geometry of XO\textsubscript{4} (X = GeIV, SiIV, PIV, AsV, etc.), HAs bearing lone electron pairs and the trigonal pyramidal geometry of XO\textsubscript{3} (X = SbIII, BiIII, AsIII, SeIV, TeIV, etc.) show better convenience and availability in the construction of lacunary or open POM building units with more reactive sites,13,14 because the spatial stereoscopic effect of the lone electron pairs on the XO\textsubscript{3} groups can effectively prevent the formation of plenary structures.15,16

In comparison with the group-valence HA-inserted (such as GeIV, SV, PV, AsV) HPOM fragments, substitution of the subgroup-valence HAs (such as PIII, SbIII, BiIII, AsIII, SeIV, TeIV) for the group-valence HAs can increase the negative charge of the resulting HPOM fragments, which is favorable for the incorporation of extraneous metal ions into the HPOM skeletons.17,18 Thus, introducing subgroup-valence HAs into HPOMs can provide more opportunities for developing novel HPOM derivatives with fabulous structures and unexpected performances. In addition, since the first rare-earth (RE)-containing POM (RECPOM) [H\textsubscript{4}CeMo\textsubscript{12}O\textsubscript{42}]2− was discovered in 1914 by Barbieri,19 which was considered as a milestone
achievement in RECPOM chemistry, RECPOMs have aroused more and more interest. It has been demonstrated that RE ions have great potential to construct innovative RECPOMs because of their larger ion radii, flexible coordination styles, and outstanding oxyphilicity.20–25 Therefore, RE-containing HPOMs (RECHPOMs) have long been investigated owing to the synergistic effect of the RE ions and the sub-group-valence HAs in the reaction process.26 In 1997, the best-known mixed-AsIII-and-CeIII-encapsulated cyclic RECHPOM cluster $[\text{As}_{12}\text{Ce}_{16}(\text{H}_2\text{O})_{30}\text{W}_{148}\text{O}_{524}]^{76–}$ was first isolated by Pope’s group (Fig. 1a).27 In 2009, Patzke et al. discovered the longest GdIII-inserted arsenotungstate (AT) $[\text{Gd}_4\text{As}_{13}\text{W}_{134}\text{O}_{442}(\text{H}_2\text{O})_{32}]^{36–}$ consisting of twelve $[\text{AsW}_6\text{O}_{25}]^{9–}$ segments (Fig. 1b).28 The infrequent multi-RE included seleno-
tungstate (ST) and tellurotungstate (TT) aggregates $[[\text{XO}_3]\text{W}_{10}\text{O}_{34}]_8[[\text{Ce}_8(\text{H}_2\text{O})_{20}]\text{W}_4\text{O}_2]]^{48–}$ ($\text{X}=\text{Se}^{IV}$, Te^{IV}; Fig. 1c) and $[[\text{SeO}_3]\text{W}_{16}\text{O}_{34}]_8[[\text{Ce}_8(\text{H}_2\text{O})_{20}]\text{W}_2\text{O}_4][\text{W}_4\text{O}_8]\text{Ce}_4(\text{H}_2\text{O})_{14}[[\text{SeO}_3]\text{W}_4(\text{NO}_3)_2]]^{34–}$ (Fig. 1d) were addressed by Su and collaborators in 2013.29 A class of scarce 3d–4f heterometallic tungstoantimonates (TAs) $[\text{RE}_3(\text{H}_2\text{O})_5\text{Ni}^{II}(\text{H}_2\text{O})_3(\text{Sb}_4\text{O}_4)(\text{SbW}_5\text{O}_{23})_9(\text{SbW}_6\text{O}_{25})(\text{WO}_3)(\text{CH}_3\text{COO})]^{16–}$ ($\text{RE} = \text{La}^{3+}$, Pr^{3+}, Nd^{3+}) were later reported by Kong and co-workers in 2017, which were built by a central $\{\text{NiW}_6\}$ segment and three RE-connecting $\{\text{SbW}_6\}$ clusters (Fig. 1e).30 Creatively, in 2018, our group communicated a giant cerium–bismuth tungstate nanocluster $[[\text{W}_{14}\text{Ce}^{IV}_6\text{O}_{61}]][\text{W}_8\text{Bi}_6\text{Ce}^{III}_3(\text{H}_2\text{O})_{30}\text{O}_4][\text{B}=\text{BiW}_6\text{O}_{25}]^{34–}$ featuring 104 metal centers (Fig. 1f).15

It can be readily found that the majority of reported RECHPOMs only contain one type of HA in their structures. In the past several years, we have obtained some RECHPOMs consisting of one type of HA17,18,20–25 However, related investigations on RECHPOMs including two types of HAs are greatly underdeveloped hitherto, and still represent an exceedingly fascinating and extremely challenging topic. Under this background, we launched systematic explorations on RECHPOMs including two types of HAs based on the following considerations: (a) according to previous research results, the $\text{SeO}_3^{2–}$ ion with lone-pair electrons and three binding oxygen atoms exhibits a trigonal pyramidal geometry and tends to form highly active lacunary ST building units in the $\text{W}–\text{Se}–\text{O}$ system,29 and then these resulting lacunary ST segments can readily combine with RE ions to build novel and large RECHPOMs;31,32 (b) the phosphite anion ($[\text{HPO}_3]^{2–}$) with a binding proton and three oxygen atoms presents an approximately tetrahedral fashion, which allows it to behave with high reactivity to easily integrate with tungsten-oxo cluster fragments to generate lacunary phosphotungstate building units;33,34 (c) if $\text{SeO}_3^{2–}$ and H_3PO_4 can be simultaneously introduced into the tungstate and RE system, sophisticatedly controlling the proper reaction conditions should result in novel RECHPOMs including two types of HAs, in which trigonal pyramidal $[\text{SeO}_3]^{2–}$ and tetrahedral $[\text{HPO}_3]^{2–}$ groups play a directing role in the synthesis procedure. Moreover, the coexistence of trigonal pyramidal $[\text{SeO}_3]^{2–}$ and tetrahedral $[\text{HPO}_3]^{2–}$ groups in the reaction system may also provide a great possibility to generate the novel phenomenon that an infrequent HPOM fragment consists of two types of HAs, which will greatly enrich the structural types of HPOM fragments and promote the development of POM chemistry. Thus, we prepared a series of unprecedented mixed P^{III} and Se^{IV} heteroatom-oriented RE-embedded HPOTs $[\text{H}_4\text{N}(\text{CH}_3)_2]_2\text{Na}_2[\text{RE}_2(\text{H}_2\text{O})_6(\text{W}_4\text{O}_{10})(\text{HPSeW}_{15}\text{O}_{54})(\text{SeW}_9\text{O}_{33})_2]^{44}\text{H}_2\text{O}$ ($\text{RE} = \text{Ce}^{III}$ (1), Pr^{III} (2), Nd^{III} (3), Sm^{III} (4), Gd^{III} (5), Tb^{III} (6), Ho^{III} (7), Er^{III} (8)) by a self-assembly reaction strategy accompanying the step-by-step introduction of simple commercial reactants.

Fig. 1 Some typical RECHPOMs: (a) $[\text{As}_{12}\text{Ce}_{16}(\text{H}_2\text{O})_{30}\text{W}_{148}\text{O}_{524}]^{76–}$, (b) $[\text{Gd}_4\text{As}_{13}\text{W}_{134}\text{O}_{442}(\text{H}_2\text{O})_{32}]^{36–}$, (c) $[[\text{XO}_3]\text{W}_{10}\text{O}_{34}]_8[[\text{Ce}_8(\text{H}_2\text{O})_{20}]\text{W}_4\text{O}_2]]^{48–}$, (d) $[[\text{SeO}_3]\text{W}_{16}\text{O}_{34}]_8[[\text{Ce}_8(\text{H}_2\text{O})_{20}]\text{W}_2\text{O}_4[[\text{SeO}_3]\text{W}_4(\text{NO}_3)_2]]^{34–}$, (e) $[\text{RE}_3(\text{H}_2\text{O})_5\text{Ni}^{II}(\text{H}_2\text{O})_3(\text{Sb}_4\text{O}_4)(\text{SbW}_5\text{O}_{23})_9(\text{SbW}_6\text{O}_{25})(\text{WO}_3)(\text{CH}_3\text{COO})]^{16–}$, (f) $[[\text{W}_{14}\text{Ce}^{IV}_6\text{O}_{61}]][\text{W}_8\text{Bi}_6\text{Ce}^{III}_3(\text{H}_2\text{O})_{30}\text{O}_4][\text{B}=\text{BiW}_6\text{O}_{25}]^{34–}$.
(Fig. S1†). The most interesting characteristic was that the trimeric \([\text{RE}_{2}(\text{H}_2\text{O})_2(\text{W}_6\text{O}_{18})][\text{HPSeW}_{15}\text{O}_{54}]^{-}\) segments and one trivanadic Dawson \([\text{HPSeW}_{15}\text{O}_{54}]^{10-}\) segment linked by a hexanuclear \([\text{Ce}_3(\text{H}_2\text{O})(\text{W}_6\text{O}_{18})]^{2+}\) heterometallic cluster. It should be emphasized that the trivanadic \([\text{HPSeW}_{15}\text{O}_{54}]^{10-}\) segment is a new member derived from one plenary Dawson PIII–and-SeIV–inserted POA by removing three \([\text{WO}_6]\) octahedra in the polar positions and is a rarely seen HPOT fragment in POM field. Furthermore, 1 was composed with carboxyl-functionalized multi-walled carbon nanotubes (CMWCNTs) to form the 1@CMWCNT complex, which was used to modify a glass carbon electrode (GCE) to construct the 1@CMWCNT-GCE electrochemical sensor (ECS). The experimental results indicated that the obtained 1@CMWCNT-GCE ECS showed great potential to synchronously detect dopamine (DA) and uric acid (UA) in a NaH_2PO_4 phosphate buffer solution (PBS, pH 7.00).

Results and discussion

Synthesis

1–8 were successfully synthesized based on Na_2WO_4·2H_2O, Na_2SeO_3, DMA·HCl (dimethylamine hydrochloride), H_3PO_3, and RE(NO_3)_3·6H_2O (RE = Ce^{3+}, Pr^{3+}, Nd^{3+}, Sm^{3+}, Gd^{3+}, Tb^{3+}, Ho^{3+}, Er^{3+}) as raw materials. RE ions were introduced into the system, forming unprecedented RECHPOMs 1–8 simultaneously consisting of two trivanadic Keggin-type SeIV–inserted \([\beta-\alpha-\text{SeW}_{12}\text{O}_{33}]^{8-}\) segments and one trivanadic Dawson-type PIV, and-SeIV–inserted \([\text{HPSeW}_{15}\text{O}_{54}]^{10-}\) segment. In order to improve the reactivity of RE ions in this system, DMA-HCl was added as an organic solubilizer to promote the slow combination between RE cations and the in situ-generated HPOM fragments.35 What’s more, protonated [HDMAC]^+ cations under acidic condition as organic counter-cations were beneficial to stabilize the resulting RECHPOM aggregates.36,37 The pH value was also very crucial for the formation of the RECHPOMs. A lower pH environment of the reaction system could not only inhibit the slow hydrolysis of RE ions, but could also effectively enhance the synergistic reaction activity of Na_2SeO_3 and H_3PO_3 for inducing the integration of tungsten-oxo clusters, which provide good preconditions for the formation of RECHPOMs containing mixed-HA POM building blocks. In this study, 1–8 could be obtained in the pH range of 3.20–4.00, with pH 3.20 optimal and leading to high-quality crystals. The dosage of the reactants is another critical factor in the synthesis. The experimental results showed that the molar ratios of \(n(\text{Na}_2\text{WO}_4·2\text{H}_2\text{O}) : n(\text{Na}_2\text{SeO}_3) : n(\text{DMA}-\text{HCl}) : n(\text{H}_3\text{PO}_3) : n(\text{RE}(\text{NO}_3)_3·6\text{H}_2\text{O})\) were 15.35 : 1.45 : 24.54 : 0.49 : 1.15–2.30. The larger the amount of RE^{3+} ions, the quicker the crystallization rate. Perfect quality crystals could be acquired when the final molar ratio of \(n(\text{Na}_2\text{WO}_4·2\text{H}_2\text{O}) : n(\text{RE}(\text{NO}_3)_3·6\text{H}_2\text{O})\) was 15.35 : 1.61.

Structural description

The X-ray single-crystal diffraction results displayed that 1–8 are isomorphous and belong to the triclinic space group P1. Besides, both the PXRD patterns (Fig. S2†) and IR spectra (Fig. S3†) also proved this result. So, we take 1 for example to specifically explain its crystal structure. The molecular structure of 1 consists of one unique trimeric 1a POA (Fig. 2a), two

![Fig. 2](image-url) (a) The 1a POA. (b) The trivanadic Dawson-type 1b segment. (c) The trivanadic Keggin \([\beta-\alpha-\text{SeW}_{12}\text{O}_{33}]^{8-}\) fragment. (d) View of the \([\text{Ce}_3(\text{H}_2\text{O})(\text{W}_6\text{O}_{18})]^{2+}\) cluster in 1a. (e) The hypothetical hexagonal Keggin \([\text{HPW}_{12}\text{O}_{40}]^{12-}\) subunit in 1b. (f) The trivanadic Keggin \([\beta-\alpha-\text{SeW}_{12}\text{O}_{33}]^{8-}\) subunit in 1b. (g) Connection motif between the \([\beta-\alpha-\text{SeW}_{12}\text{O}_{33}]^{8-}\) subunit and \([\text{HPW}_{12}\text{O}_{40}]^{12-}\) subunit in 1b. (h) The tetrahedral geometry of the \((\text{HPO}_4)_{2-}\) group in 1b. (i) The trigonal pyramidal geometry of the \((\text{SeW}_9\text{O}_{33})^3-\) segment. (j) The coordination geometry of Ce^{3+} and Ce^{2+} ions. (W: Red and turquoise octahedron, O: red balls, W: turquoise octahedron, O: red balls, W: bright green balls, Se: bright green balls, P: pink balls, H: gray, Ce: yellow balls).
Na⁺ cations, 12 [H₂N(CH₃)₂]⁺ cations, and 44 lattice water molecules. In detail, 1a can be deemed as one trivacant Dawson [HPSeW₁₂O₃₆][Sb₃W₁₀O₃₄] (Fig. 2b) and two trivacant Keggin [B-α-SeW₁₂O₃₆]₈⁻ segments (Fig. 2c) bridged by a hexanuclear heterometallic [Ce₂(H₂O)(W₄O₉)]₁²⁺ cluster (Fig. 2d). All the WVI centers displayed the octahedral coordination geometry [W–O: 1.659(17)–2.546(17) Å, ∠ O–W–O: 67.0(6)–176.3(9)°]. Noticeably, a fresh Dawson 1b segment can be considered as a combination of a hypothetical hexavacant Keggin [HP₆W₁₂O₄₀]₁²⁺ subunit (Fig. 2e) and the trivacant Keggin [B-α-SeW₁₂O₃₆]₈⁻ subunit (Fig. 2f). It can be explicitly seen from the ball-and-stick view of the trivacant Dawson 1b segment (Fig. 2g) that six {WO₆} octahedra at the unsealed end of the [B-α-SeW₁₂O₃₆]₈⁻ segment are connected with six {WO₆} octahedra of the [HP₆W₁₂O₄₀]₁²⁺ subunit by sharing six μ₂-O atoms. It should be pointed out that the 1b segment comprises two types of Has: one is the P⁶⁺ atom with the [H₃PO₄] tetrahedral configuration, which is centrally located and connected to three O atoms (P–O: 1.501(15)–1.559(16) Å, P–H: 1.400(10), ∠ O–P–O: 111.0(9)–112.3(9)°, ∠ O–P–H: 95(10)–120(10)°, Fig. 2h), the other is the Se⁶⁺ atom with the [SeO₃] trigonal pyramidal geometry [Se–O: 1.660(15)–1.715(17) Å, ∠ O–Se–O: 95.7(9)–101.9(8)°] (Fig. 2i). The simplified connection mode of the [Ce₂(H₂O)(W₄O₉)]₁²⁺ cluster is depicted in Fig. 2j, in which Ce₁, Ce₂, W₁₈, W₁₉, and W₅ centers form a distorted trigonal bipyramid (Fig. 2k). Among them, the W₆ center hangs on the W₅ and Ce₂ centers. Both Ce₁³⁺ and Ce₂³⁺ cations are connected with each other via four Ce–O–W–O–Ce bonds (Ce₁–O₁₉–W₁₆–O₄₆–Ce₂, Ce₁–O₁₁₈–W₁₈–O₇₄–Ce₂, Ce₁–O₄₇–W₁₉–O₁₁₄–Ce₂, Ce₁–O₁₉–W₆–O₄₆–W₅–O₂–Ce₂), giving birth to the [Ce₂(H₂O)(W₄O₉)]₁²⁺ cluster. Both Ce₁³⁺ and Ce₂³⁺ cations reside in a distorted bicapped trigonal prismatic geometry (Fig. 2l). The bicapped trigonal prism of the Ce₁³⁺ cation is constituted by three O atoms (O₁₉, O₄₇, O₁₁₈) from the [W₄O₉]⁶⁻ unit [Ce–O: 2.428(16)–2.508(14) Å], two atoms (O₇₉, O₁₁₉) from one trivacant [B-α-SeW₁₂O₃₆]₈⁻ segment [Ce–O: 2.463(15)–2.479(16) Å], and three coordinated water O atoms (O₁ W, O₂ W, O₃ W) [Ce–O: 2.47(2)–2.57(2) Å], while the eight-coordinate Ce₁³⁺ cation binds to four O atoms (O₂, O₄₆, O₇₄, O₁₁₄) from the [W₄O₉]⁶⁻ unit [Ce–O: 2.390(16)–2.528(16) Å], two O atoms (O₇₆, O₇₈) from the other trivacant [B-α-SeW₁₂O₃₆]₈⁻ cluster [Ce–O: 2.488(16)–2.503(17) Å], and two aqua molecules (O₄ W, O₅ W) [Ce–O: 2.453(17)–2.537(19) Å].

The cap sites are respectively occupied by two aqua molecules O₁ W and O₃ W for the Ce₁³⁺ cation, and one O₂ atom and one O₄ W water molecule for the Ce₂³⁺ cation. The bond valence sum (BVS) calculations of the bridging oxygen atoms and coordinated water molecules on Ce₁³⁺ and Ce₂³⁺ ions in 1 are given in the ESI (Table S2†).

Albeit REHPOMs with two types of HA-inserted POM building blocks haven’t been addressed to date, some HPOMs containing different POM building blocks have been sporadically reported. For example, in 2014, Cronin et al. presented a seductive multi-Pd⁴⁺ incorporated ST [H₃Pd₁₀Se₁₀W₁₆O₃₀]²⁻ (Fig. 3a) comprising one tetravanadyl Dawson [Se₆W₁₄O₅₂]¹²⁻ and two trivacant Keggin [B-α-SeW₁₂O₃₆]₈⁻ fragments. In the same year, Yang’s group discovered the largest Zr₂₄-cluster-inserted germanotungstate (GT) [Zr₂₄O₆₂(H₂O)₁₀(H₂O)₂ [W₁₆O₄₀]₄(GeW₉O₃₃)₁₂]²⁻ (Fig. 3b) under hydrothermal conditions, which was built by four trilacunary Keggin [B-α-GeW₉O₃₃]₁₀⁻ subunits bridged by an S-shaped [Zr₂₄O₆₂(H₂O)₁₀(H₂O)₂]²⁻ cluster. In 2016, an organoantimony (iii)-functionalized trimeric ATP [Zr₂₄O₆₂(OH)₁₀(H₂O)₂ [W₁₆O₄₀]₄(GeW₉O₃₃)₁₂]²⁻ (Fig. 3c) under hydrothermal conditions, which was by four trilacunary Keggin [B-α-GeW₉O₃₃]₁₀⁻ and two tetralacunary Keggin [B-α-GeW₉O₃₃]₁₀⁻ subunits bridged by an S-shaped [Zr₂₄O₆₂(OH)₁₀(H₂O)₂]²⁻ cluster. In 2018, a novel S-shaped tetrameric RE-organotin encapsulated TT (RE₆(OH)₆(B-α-TeW₁₆O₃₆)Sn₂(CH₃)₄(W₅O₁₈))₄ (RE = Er³⁺, Yb⁺⁺, Ho³⁺, Y³⁺) were synthesized through the one-step self-assembly strategy by our lab, which encompassed two pentavanadyl Keggin [B-α-TeW₁₆O₃₆]₁²⁻ and two monovacant Lindqvist [W₅O₁₈]⁶⁻ entities joined by RE ions and dimethyltin groups (Fig. 3d). In 2019, Yang et al. synthesized a novel trinuclear-Zr⁴⁺ substituted TT [Zr₃(OAc)₆(W₅O₁₈)₂(B-α-AsW₉O₃₃)]₁₅⁻ (RE = Er³⁺, Yb⁺⁺, Ho³⁺, Y³⁺) consisting of one divacant Lindqvist [W₅O₁₈]⁶⁻ and two trivacant Keggin [B-α-AsW₉O₃₃]₈⁻ (Fig. 3e).
The PIII- and SeIV co-inbuilt trilacunary Dawson segment 1b takes after the [HPSeW15O64]10− (Fig. 4a) observed in the cross-shaped clusters [(XYW15O64)4(WO4)4]12−/36− (X = HPIII, Y = SeIV, TeIV, AsIV) reported by Cronin’s group in 2014,33 but has never been seen in other RECHPOMs. Up to now, some additional lacunary Dawson ST segments have also been discovered, such as [Se2W13O49]12− (Fig. 4c) in [Gd4Se6W48O166(H2O)(OH)4]20−, [Se2W14O52]12− (Fig. 4d) in [SeO4RE5(H2O)7(Se2W14O52)]12−, [Se2W15O62]16− (Fig. 4e) in [{Sn(CH3)2}4{Sn(CH3)2}3{Se2W18O62(OH)}3]18−, [Se2W16O60]16− (Fig. 4f) in [{Sn(CH3)2}4{Sn(CH3)2}3{Se2W18O64}]12−, and [Se2W18O64]12− (Fig. 4g) in [{Sn(CH3)2}4{Sn(CH3)2}3{Se2W18O64}]12−.

Electrochemical sensing properties

The electrochemical detection of small bioactive molecules, such as dopamine, uric acid, and ascorbic acid, in the human body has aroused great attention in analytical chemistry and the clinical medicine fields.47−53 As an important neurotransmitter in the brain, DA is involved in many physiological and pathological activities of humans and mammals. Previous studies have proved that DA has momentous medicinal value in treating Parkinson’s disease, depression, shock (including toxic shock, cardiogenic shock, hemorrhagic shock and central shock) and so on.15,54 In addition, UA is the end product of purine metabolism in the human body and it has a rather energetic antioxidant ability and plays a key role in guaranteeing the normal function of cells. The excretion imbalance of UA, resulting in an elevated UA content in blood, is the main cause of gout.55−58 Therefore, searching for a swift and straightforward detection method to determine DA and UA has long been a focus in related fields. Currently, electrochemical detection toward DA or UA has been applied on account of its high sensitivity, operational briefness, fast response, and low cost. The oxidation potentials of DA and UA are similar and it is difficult to separate them; therefore, it is still challenging to detect DA and UA at the same time.59 Due to the structural diversity and good redox performances, POMs have attracted considerable interest in the sensing field,60 while the conductivity of the POM-based sensors remains a critical problem to be solved. As is well-known, CMWCNTs, benefiting from their high electrical conductivity, have often been studied to modify electrodes so as to improve their electrochemical performance, elevate the response signal, and enhance the sensitivity of detecting biological targets. Therefore, considering that POMs can potentially act as efficient donors or acceptors of electrons without structural change, 1 was used to fabricate an ECS and its electrochemical response was evaluated toward the simultaneous detection of DA and UA. Specifically, the complex of 1 and CMWCNT was dropped onto GCE forming 1@CMWCNT-GCE. The electrochemical responses of the
1@CMWCNT-GCE ECS to detect DA and UA were further studied by cyclic voltammetry (CV) in 0.10 mol L$^{-1}$ PBS (pH 7.00). The idiographic preparation process of 1@CMWCNT-GCE ECS is revealed in the ESI† while schematics of the preparation route and possible detection response mechanism are displayed in Fig. 6.

In order to probe the stability of 1 in aqueous solution, the UV spectral evolution of 1 in aqueous solution with the pH varying from 1.00 to 10.00 was measured (Fig. S6†), which indicated that 1 was stable in the pH range of 3.00–8.00. As a result, the CV responses of 1@CMWCNT-GCE to 1.00 mmol L$^{-1}$ DA or 1.00 mmol L$^{-1}$ UA in 0.10 mol L$^{-1}$ PBS solution (pH 7.00) were investigated (Fig. 7a), and showed conspicuous CV response signals of 1@CMWCNT-GCE to 1.00 mmol L$^{-1}$ DA (purple line) or 1.00 mmol L$^{-1}$ UA (red line) in 0.10 mol L$^{-1}$ PBS solution, respectively, which can suggest that the simultaneous detection of 1@CMWCNT-GCE for DA and UA may be feasible since two characteristic oxidation peaks derived from DA (0.19 V) and UA (0.38 V) could be easily distinguished.61

Then, CV curves of the bare GCE, CMWCNT-GCE, and 1@CMWCNT-GCE in 0.10 mol L$^{-1}$ PBS (pH 7.00) in the absence of DA and UA were respectively researched (Fig. S7†). From the results, no redox peak could be seen when the bare GCE was used, while a couple of weak redox waves with the ox-
dation peak potential of +0.02 V and reduction peak potential of −0.42 V, which resulted from the redox process of CMWCN, could be observed by using CMWCNT-GCE. By contrast, when 1@CMWCNT-GCE was employed, one newly emerged oxidation peak at −0.09 V and one reduction peak at −0.16 V in the CV curve could be assigned to the redox process of the WVI centers in 1 (Fig. S7†). Thereafter, the CV responses of the bare GCE, CMWCNT-GCE, and 1@CMWCNT-GCE were measured in 0.10 mol L−1 PBS (pH 7.00) in the presence of 1.00 mol L−1 DA or UA, respectively (Fig. 7b and c). The CV curves measured in PBS containing 1.00 mmol L−1 DA presented two apparent oxidation peaks around +0.19 and −0.24 V and two corresponding reduction peaks around +0.08 and −0.31 V, which could be attributed to the redox process of DA (Fig. 7b). There is no doubt that the appearance of the strongest oxidation and reduction peaks of DA when 1@CMWCNT-GCE was employed, as the working electrode demonstrated that 1@CMWCNT-GCE may be a valuable choice for the electrochemical detection of DA. Similarly, Fig. 7c shows the presence of a strong oxidation peak at 0.38 V and a corresponding reduction peak at 0.28 V, resulting from the oxidation–reduction process of UA. It can be clearly seen from the above comparison that the current intensities of the redox peaks of DA or UA taken by using 1@CMWCNT-GCE were dramatically enhanced compared with those obtained by CMWCNT-GCE or bare GCE, which indicates that 1 plays a signal amplification role in improving the sensing performance of 1@CMWCNT-GCE. Considering such a promising potential of 1@CMWCNT-GCE in a single-component detection process for either DA or UA, it is believed that the simultaneous detection of two or even more small biomolecules (e.g., DA and UA) is worthy of being studied.

Thus, the CV responses of bare GCE, CMWCNT-GCE, and 1@CMWCNT-GCE to 0.10 mol L−1 PBS solution simultaneously containing DA and UA ([DA or UA] = 1.00 mmol L−1) in the voltage range of −1.00–1.00 V at a scan rate of 100 mV s−1 were tested (Fig. 7d). The test results demonstrated that 1@CMWCNT-GCE indeed showed remarkably stronger CV oxidation signals of DA (0.19 V) and UA (0.34 V) than either bare GCE or CMWCNT-GCE. This phenomenon certified that 1@CMWCNT-GCE can serve as an ECS to simultaneously detect DA and UA in PBS solution. Therefore, it is believed that 1a POAs in 1@CMWCNT-GCE behave as a signal amplifier in the electrochemical sensing process. The sensing mechanism of the 1@CMWCNT-GCE ECS toward detecting UA and DA can be speculated as follows: (i) hydrogen-bonding, electrostatic attraction, and physisorption interactions between DA/UA and POAs in 1a; (ii) the synergistic effect of 1 as a signal-amplifier and CMWCNT as a conductivity enhancer facilitates a good sensing performance of the 1@CMWCNT-GCE ECS for detecting DA and UA.66

![Fig. 7](image_url)
So as to examine the stability of the 1@CMWCNT-GCE ECS, the working process of the 1@CMWCNT-GCE ECS toward detecting DA and UA was monitored by CV measurements for 180 cycles in 0.10 mol L\(^{-1}\) PBS solution including 1.00 mmol L\(^{-1}\) DA and 1.00 mmol L\(^{-1}\) UA (pH 7.00). It can be seen from Fig. 7e that the peak current and peak potential were slightly changed, which testifies that the 1@CMWCNT-GCE ECS exhibited excellent stability during the detection. Compared with DA, although the peak current of UA was decreased a little, the peak current for the 180th cycle for UA still declined by no more than 15% in contrast to the 1st peak current, which can meet the need for the detection.

The effect of the scan rate on the CV curves for the 1@CMWCNT-GCE ECS in the sensing process of DA and UA was also investigated with the scan rate varying from 20 to 200 mV s\(^{-1}\) (Fig. 7f). This showed that the peak currents of DA and UA increased gradually with the increasing of scan rate. The linear equation of the oxidation peak current of DA and its concentration. (c) DPV curves of 1@CMWCNT-GCE with the UA concentration varying in the range of 2–200 μmol L\(^{-1}\). (d) The linear relationship between the peak current of UA and its concentration. (e) DPV curves of 1@CMWCNT-GCE with the DA and UA concentration varying in the range of 10–100 μmol L\(^{-1}\). (f) The linear relationship between the peak currents of DA and UA and their concentrations.

In addition, differential pulse voltammetry (DPV) was also adopted to study the detection of the 1@CMWCNT-GCE ECS toward DA and UA. First, DPV response curves of the 1@CMWCNT-GCE ECS in 0.10 mol L\(^{-1}\) PBS (pH 7.00) with the change in the concentration of DA or UA (c = 2–200 μmol L\(^{-1}\)) were detected. Fig. 8a shows that the peak current (I) gradually increased with the elevation of the DA concentration (c) at 10–160 μmol L\(^{-1}\), showing a good linear relationship in the DA concentration range of 10–160 μmol L\(^{-1}\). The relationship between I and c could be fitted using the linear regression equation of \(I_{DA} (\mu A) = 0.41c (\mu mol L^{-1}) + 92.68\) (\(R^2 = 0.988\)) (Fig. 8b) (\(R^2\); the linear correlation). The limit of determination (LOD) of the 1@CMWCNT-GCE ECS toward DA was calculated to be 1.85 μmol L\(^{-1}\) (LOD = 3σ/k, σ: the standard deviation; k: the slope of the linear equation). Fig. 8c reveals the peak current increased in proportion to the UA concentration in the range of 8–140 μmol L\(^{-1}\) and it could be fitted by \(I_{UA} (\mu A) = 0.16c (\mu mol L^{-1}) + 22.63\) (\(R^2 = 0.981\), c: the concentration of UA) (Fig. 8d). The LOD of the 1@CMWCNT-GCE ECS toward UA was calculated to be 4.73 μmol L\(^{-1}\). The good linear relation between the peak current and the concentration of DA or UA demonstrated that the 1@CMWCNT-GCE ECS was suitable for examining DA and UA in the aforesaid concentration range. These results suggest that the peak currents increased gradually and showed a good linear relationship when DA and UA were detected by the above method, indicating that it is feasible to discuss the concentrations of these two small molecules simultaneously.

Then, the 1@CMWCNT-GCE ECS was used to simultaneously detect the peak currents of DA and UA (c(DA : UA) = 1 : 1) in different concentrations. As can be seen from Fig. 8e, when the total concentration of DA and UA increased in the range of 10–100 μmol L\(^{-1}\), their peak currents gradually rose.
and showed a good linear relationship between I and c, which could be fitted by the linear regression equation of I_{DA} (μA) = 0.47c (μmol L$^{-1}$) + 38.11 (R^2 = 0.989) for detecting DA and I_{UA} (μA) = 0.14c (μmol L$^{-1}$) + 37.34 (R^2 = 0.986) (Fig. 8f) for detecting UA. Therefore, the LODs of DA and UA when 1@CMWCNT-GCE served as the ECS were calculated to be 1.61 and 5.41 μmol L$^{-1}$, respectively. Although the linear range decreased in the two-component detection process, the linear relationship between the peak current and the concentration was still pretty good, which shows the good opportunity for developing 1@CMWCNT-GCE ECS as an efficient biosensor to detect small biomolecules in biological environments.

Conclusions
In conclusion, a series of mixed PIII and SeIV heteroatom-oriented RE-embedded HPOTs 1–8 were first prepared in aqueous solution through the self-assembly reaction strategy. The most noteworthy architectural feature of 1–8 is that their POA backbones concurrently comprised two trivacant Keggin-type SeV-inserted [B-α-SeW_6O_{33}]$^{18-}$ segments and one trivacant Dawson-type PIII- and SeIV-inserted [HPSeW_7O_{24}]$^{10-}$ segment joined by a hexanuclear heterometallic [RE$_2$(H$_2$O)(W$_4$O$_9$)]$^{12+}$ cluster, which represent the first RECHPOMs including two types of HAs. This study consolidates the notion that it is highly feasible to synchronously introduce two or even more kinds of HAs into the RECHPOM system, which lays a firm foundation for designing and synthesizing more novel HPOM-based materials. Moreover, 1@CMWCNT-GCE could work as an ECS for the detection of DA and UA and showed a good stability and a low detection limit, demonstrating the application potential of 1 in the electrochemical biosensing field. Also, this work will drive further study on multi-HA-inserted POMs in the future.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (22071042, 21771052, 21671054, 21571048, 21871077), the Program for Innovation Teams in Science and Technology in Universities of Henan Province (20IRTSTHN004), the Program of First-Class Discipline Cultivation Project of Henan University (2019YLZDYJ02, CJ1205A0240019) and the College Students Innovation and Entrepreneurship Training Program of Henan University (202010475001).

Notes and references
15. J.-C. Liu, Q. Han, L.-J. Chen, J.-W. Zhao, C. Streb and Y. F. Song, Aggregation of giant cerium-bismuth tungstate
Inorganic Chemistry Frontiers
Research Article

17 B. S. Bassil, M. H. Dickman, I. Rümer, B. von der Kammer and U. Kortz, The tungstogermanate \([\mathrm{Ce}_2\mathrm{Ge}_{10}\mathrm{W}_{196}\mathrm{O}_{376}(\mathrm{OH})_2\mathrm{H}_2\mathrm{O}]_{10}^{36-} \): a polyoxometalate containing 20 cerium(III) atoms, Angew. Chem., Int. Ed., 2007, 46, 6192–6195.

20 K. Fukaya and T. Yamase, Alkalimetal-controlled self-assembly of crown-shaped ring complexes of lanthanide[α-AsW$_9$O$_{33}$]$_4$: \[\text{KC}[\text{Eu(H}_2\text{O)}_3][\text{α-AsW}_9\text{O}_{33}]_3]^{35-} \text{and } [\text{CsC}[\text{Eu(H}_2\text{O)}_3][\text{α-AsW}_9\text{O}_{33}]_3]^{25-}, \text{Angew. Chem., Int. Ed., 2003, 42, 654–658.}\]

36 P. Yang, Z. G. Lin, G. Alfaro-Espinosa, M. S. Ullrich, C. I. Rat, C. Silvestru and U. Kortz, 19-tungstodiarsenate (III) functionalized by organoantimony(III) groups: tuning
51 L. Zhang, X. Geng, J. Zhou, Y. Wang, H. L. Gao, Y. Zhou and J. Huang, Fabrication of poly(γ-glutamic acid)-based biopolymer as the targeted drug delivery system with enhanced cytotoxicity to APN/CD13 over-expressed cells, J. Drug Targeting, 2015, 23, 453–461.
53 Y. Yang, M. X. Li and Z. W. Zhu, A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid, Talanta, 2019, 201, 295–300.
