The First 3-Connected SrSi_{2}-Type 3D Chiral Framework Constructed from $\left\{\mathrm{Ni}_{6} \mathrm{PW}{ }_{9}\right\}$ Building Units

Xin-Xiong Li, ${ }^{[a]}$ Wei-Hui Fang, ${ }^{[a]}$ Jun-Wei Zhao,* ${ }^{[b]}$ and Guo-Yu Yang* ${ }^{* a, c]}$

Abstract

A novel 3-connected SrSi-type 3D chiral framework constructed from hexa-Ni"-cluster-substituted polyoxometalate (POM) units $\left[\mathrm{Ni}(\mathrm{enMe})_{2}\right]_{3}\left[\mathrm{WO}_{4}\right]_{3}-$ $\left[\mathrm{Ni}_{6}(\mathrm{enMe})_{3}(\mathrm{OH})_{3} \mathrm{PW}_{9} \mathrm{O}_{34}\right]_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad$ (1) \quad (enMe= $=1,2$-diaminopropane) has been made from a hydrothermal synthetic method. This POM represents the first 3D framework based on $\left\{\mathrm{Ni}_{6} \mathrm{PW}_{9}\right\}$ units and $\left\{\mathrm{WO}_{4}\right\}$ connectors.

Polyoxometalates (POMs) as anionic oxide clusters have been attracting extensive interest owing to their enormous structural variety and potential applications in multiple areas, such as catalysis, ${ }^{[1]}$ magnetism, ${ }^{[2]}$ and material science. ${ }^{[3]}$ The POM clusters with diverse shapes, nanosizes, and compositions provide a huge library of readily available and controllable second building units (SBUs) that are prime candidates for the design and construction of interesting and functional architectures by various linkers. To date, many research groups have devoted great efforts to exploring rational synthetic strategies for constructing novel POM-based materials. For example, Müller et al. reported a supramolecular POM-based cage $\left\{(M) M_{5}\right\}_{12} \mathrm{Fe}^{\mathrm{III}}{ }_{30}$ ($\mathrm{M}=\mathrm{Mo}^{\mathrm{VI}}, \mathrm{W}^{\mathrm{VI}}$) based on $\left\{\mathrm{M}_{6} \mathrm{O}_{21}\right\}$ SBUs and Fe^{2+} bridges. ${ }^{[4]}$ Similarly, Cronin et al. created a series of porous frameworks by linking cyclic $\left[\mathrm{P}_{8} \mathrm{~W}_{48} \mathrm{O}_{184}\right]^{40-}$ SBUs with electrophilic Mn^{2+} linkers. ${ }^{[5]}$ Saturated Keggin/Dawson/Anderson polyanions have often been used as SBUs in the construction of massive inor-ganic-organic hybrid materials. ${ }^{[6]}$ Moreover, transition-metalsubstituted POMs (TMSPs) can be also utilized as SBUs to build interesting structures from limited aggregates to infinite 3D

[^0]frameworks. Typical examples include dimeric/tetrameric aggregates constructed from $\left[\mathrm{V}_{3} \mathrm{P}_{2} \mathrm{~W}_{15} \mathrm{O}_{62}\right]^{9-}$ and tripodal ligands, ${ }^{[7]}$ the 1D chain built by $\left[\mathrm{Ni}_{20} \mathrm{P}_{4} \mathrm{~W}_{34}(\mathrm{OH})_{4} \mathrm{O}_{136}(\mathrm{en})_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{12-}$ nanoclusters and en bridges, ${ }^{[8]}$ the 2 D layer consisting of double-Dawson-type $\left[\mathrm{CuP}_{2} \mathrm{~W}_{17} \mathrm{O}_{60}(\mathrm{OH})\right]_{2}{ }^{14-}$ clusters and $\left[\mathrm{Cu}(\mathrm{en})_{2}\right]^{2+}$ linkers, ${ }^{[9 \mathrm{aa}]}$ the 2D sheet made up of sandwichtype $\left[\mathrm{Zn}_{4}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ units and $\left[\mathrm{Zn}(\mathrm{enMe})_{2}\right]^{2+}$ and enMe linkers, ${ }^{[9 b]}$ and the 3D framework assembled from $\left[\mathrm{Cu}_{8}(\mathrm{en})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{4-}$ clusters and $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ linkers. ${ }^{[9 \mathrm{cc}]}$ Our group also obtained a class of fascinating 1-, 2- and 3D cluster-organic frameworks based on hexa-Ni"-substituted POM units $\left[\mathrm{Ni}_{6}\left(\mu_{3}-\mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{~L})_{3}\left(\mathrm{~B}-\alpha-\mathrm{PW}_{9} \mathrm{O}_{34}\right)\right] \quad\left(\mathrm{Ni}_{6} \mathrm{PW}_{9}, \quad \mathrm{Ni}_{6}=\right.$ $\left[\mathrm{Ni}_{6}\left(\mu_{3}-\mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{~L})_{3}\right]^{9+}, \quad \mathrm{PW}{ }_{9}=\left[\mathrm{B}-\alpha-\mathrm{PW}_{9} \mathrm{O}_{34}\right]^{9-}, \quad \mathrm{L}=$ en/enMe $)$ connected by multicarboxylate units. ${ }^{[10 a]}$ More interestingly, a hybrid cubic POM molecular cage based on $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ SBUs and 1,3,5-benzenetricarboxylic acid has also been made by us recently. ${ }^{[10 b]}$

As shown above, although various kinds of linkers, such as transition-metal cations, multicarboxylates, and organoamine molecules, have been extensively used in the construction of POM-based materials, ${ }^{[4-10]}$ linking TMSP SUBs by means of oxometal anionic groups generating extended POM-based materials remains largely unexplored, mainly because TMSP SUBs are usually highly negatively charged and have oxygen-rich compositions, which leads to the preferential bonding of metal cations rather than metaloxo anions. Recently, the hydrothermal technique has been proved to be an extraordinarily powerful synthetic strategy for preparing many uncommon structures that cannot be obtained through the conventional solution method. ${ }^{[11]}$ Thus, we decided to introduce oxometal anionic groups to connect TMSP SBUs for novel POM materials under hydrothermal conditions. In this work, we chose the $\mathrm{WO}_{4}{ }^{2-}$ anion as the bridge and $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ as the SBU based on the following facts: 1) $\mathrm{Ni}_{6} \mathrm{PW}$, units have been proved by us to be highly active SBUs in the construction of extended POM frameworks, as six accessible coordinated water ligands on the top can be easily substituted by other groups;; ${ }^{[10 a]}$ and 2) we have observed the substitution of coordinated water ligands on Ni_{6} cluster, in a discrete Ni_{40}-based poly(polyoxotungstate) octamer, by in-situ generated $\mathrm{WO}_{4}{ }^{2-}$ anions. ${ }^{[12]}$

In this work, we report on the introduction of $\mathrm{Na}_{2} \mathrm{WO}_{4}$, and successfully realized the replacement of six coordinated water ligands of $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ by three $\mathrm{WO}_{4}{ }^{2-}$ ions (Figure $1 \mathrm{a}, \mathrm{b}$), affording an unprecedented 3D POM framework $\left[\mathrm{Ni}(\text { enMe })_{2}\right]_{3}\left[\mathrm{WO}_{4}\right]_{3}\left[\mathrm{Ni}_{6}-\right.$ (enMe) $\left.)_{3}(\mathrm{OH})_{3} \mathrm{PW}_{9} \mathrm{O}_{34}\right]_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (1), in which $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ units act as SBUs and tetrahedral $\mathrm{WO}_{4}{ }^{2-}$ groups function as bridges. So far, reports on POM structures containing tetrahedral $\mathrm{WO}_{4}{ }^{2-}$

Figure 1. a) Ball and stick representation of Ni_{6} cluster. b) Ball and stick representation of $\mathrm{WO}_{4}{ }^{2-}$ ligands substituted Ni_{6} cluster. Symmetry codes: $\mathrm{a}(-1+y, 1+z, x), b(z, 1+x,-1+y)$. c) View of the 3D framework of 1 along the c axis. d) View of the connectivity of a $\mathrm{Ni}_{6} \mathrm{PW}_{9} \mathrm{SBU}$ with three neighbouring ones along (111) direction. e) View of the right-handed helical chain constructed by $\mathrm{Ni}_{6} \mathrm{PW}{ }_{9}$ SBUs and WO_{4} linkers. f) View of the simplified right-handed helical chain. g) The 3D topology of 1 along the c axis. For d)e), $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ node: green. Color code: WO_{6} : red; PO_{4} : yellow; WO_{4} : purple; $\mathrm{NiO}_{6} / \mathrm{NiO}_{4} \mathrm{~N}_{2}$: green.
groups are very rare..$^{[12,13]}$ To our knowledge, 1 is the first 3D POM framework based on $\mathrm{Ni}_{6} \mathrm{PW}{ }_{9}$ SBUs and tetrahedral $\left\{\mathrm{WO}_{4}\right\}$ linkers.

Crystals of 1 were obtained by the hydrothermal reaction of $\left[\mathrm{A}-\alpha-\mathrm{PW}_{9} \mathrm{O}_{34}\right]^{9-}, \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, enMe, and $\mathrm{Na}_{2} \mathrm{WO}_{4}$ at $170^{\circ} \mathrm{C}$ for 3 days, and the consistence of the experimental powder X-ray diffraction pattern with the simulated one indicates the good phase purity of 1 (Figure S1 in the Supporting Information). Single-crystal X-ray structural analysis reveals that 1 crystallizes in the cubic $P 2_{1} 3$ chiral space group and the structural unit consists of two $\mathrm{Ni}_{6} \mathrm{PW}$ g clusters, three tetrahedral $\mathrm{WO}_{4}{ }^{2-}$ groups, and three $\left[\mathrm{Ni}(\mathrm{enMe})_{2}\right]^{2+}$ cations. Compound 1 exhibits a 3 D extended structure based on $\mathrm{Ni}_{6} \mathrm{PW}_{9} \mathrm{SBUs}$ and $\mathrm{WO}_{4}{ }^{2-}$ bridges (Figure 1 c). The structure of $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ can be described as a well-known trivacant Keggin $\left[\mathrm{B}-\alpha-\mathrm{PW}_{9} \mathrm{O}_{34}\right]^{9-}$ unit capped by a Ni_{6} cluster (Figure S 2 in the Supporting Information). The Ni_{6} cluster is made up of six nearly coplanar Ni^{2+} ions in a triangle motif linked together by three $\mu_{3}-\mathrm{OH}$ groups, six $\mu_{3}-\mathrm{O}$ atoms from six WO_{6} groups, one $\mu_{4}-\mathrm{O}$ atom from the central
PO_{4} group and further stabilized by six $\mathrm{H}_{2} \mathrm{O}$ and three enMe ligands. The most striking structural feature in 1 is that the six coordinated water ligands on $\mathrm{Ni}_{6} \mathrm{PW}$, unit are replaced by three $\mathrm{WO}_{4}{ }^{2-}$ groups to form a $\left\{\mathrm{W}_{3} \mathrm{O}_{6}\left(\mathrm{Ni}_{6} \mathrm{PW}_{9}\right)\right\}$ unit with $\mathrm{C}_{3 v}$ symmetry (Figure $1 \mathrm{a}, \mathrm{b}$ and Figure S 3 in the Supporting Information). Each $\mathrm{WO}_{4}{ }^{2-}$ group coordinates to $\mathrm{Ni}_{6} \mathrm{PW}$, by replacing two terminal water ligands and each $\mathrm{WO}_{4}{ }^{2-}$ group adopts the $\eta^{1}: \eta^{1}: \mu_{2}$ coordination mode. Thus, each $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ unit acts as a triangular three-connected SBU (Figure 1d, Figure S3 in the Supporting Information). The $\mathrm{W}-\mathrm{O}$ distances in the $\mathrm{WO}_{4}{ }^{2-}$ groups are in the range of $1.754(6)-1.781(6) \AA$, and the $\Varangle \mathrm{O}-\mathrm{W}-\mathrm{O}$ bond angles vary from $107.3(3)$ to $110.0(2)^{\circ}$, which is quite close to that of the standard XO_{4} group, indicating that $\mathrm{WO}_{4}{ }^{2-}$ groups retain the ideal geometrical configuration without any evidence of distortion after replacing the terminal water ligands. Generally, the distances between two neighboring water ligands in similar Ni_{6} clusters are 2.871-3.253 $\AA_{,}^{[10]}$ whereas the $\mathrm{O}-\mathrm{O}$ distances in the $\mathrm{WO}_{4}{ }^{2-}$ groups in $\mathbf{1}$ vary between 2.892(4)-2.903(5) \AA, which demonstrates that the WO_{4}^{2-} groups are well matched with Ni_{6} cluster with respect to steric considerations, thus $\mathrm{WO}_{4}{ }^{2-}$ groups can substitute the terminal water ligands. So far, the substitution of water ligands on Ni_{6} cluster by various organic or inorganic ligands has been observed; ${ }^{[10,11]}$ however, substitution of all six water ligands by $\mathrm{WO}_{4}{ }^{2-}$ has not been reported. It should be noted that SBUs can further expand to the extended framework by the bridging role of $\mathrm{WO}_{4}{ }^{2-}$ groups, which is another striking structural feature of 1. Each $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ unit connects to three neighboring $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ units through three $\mathrm{WO}_{4}{ }^{2-}$ groups (Figure 1 d), resulting in an unprecedented 3D POM framework (Figure 1 c , Figure S4 in the Supporting Information). In 1, the alignment of $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ units and $\mathrm{WO}_{4}{ }^{2-}$ bridges along 2_{1} screw axis forms a righthanded helical chain along the c axis (Figure $1 \mathrm{e}, \mathrm{f}$). All the right-handed helical chains are further linked together by $\mathrm{WO}_{4}{ }^{2-}$ along both the a and b axes to yield a 3D chiral framework with 1D irregular channels (dimensions of $1.78 \times 1.06 \mathrm{~nm}^{2}$, measured between the opposite polyhedra) in which the $\left[\mathrm{Ni}(\mathrm{enMe})_{2}\right]^{2+}$ cations and water molecules are located (Figure S5 in the Supporting Information). In addition, a clockwise orientation arrangement of the $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ units can be also observed along (111) direction (Figure S6 in the Supporting Information), which further testifies the chiral framework of 1 . From the topological point of view, the 3D framework of 1 is a 3connected network, in which each $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ acts as a 3 -connected node. A topological analysis of this net was performed with TOPOS 4.0 and the long topological (O'Keeffe) vertex symbol is $10_{5} \cdot 10_{5} \cdot 10_{5}$ for $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ node, which gives the short vertex (Schläfli) symbol of $\left(10^{3}\right)$, indicating that 1 possesses a chrial SrSi_{2}-type topology (Figure 1 g). Although chiral 10^{3} networks based on metal ions and organic ligands in metal-organic frameworks have been investigated, ${ }^{[14]}$ there is no example based on POM units. To our knowledge, 1 represents the first 3D 3-connected SrSi_{2}-type POM framework based on $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ SBUs and $\mathrm{WO}_{4}{ }^{2-}$ bridges.
Variable-temperature magnetic susceptibility of 1 was measured in the temperature range of $2-300 \mathrm{~K}$ with an applied magnetic field of 1 KOe (Figure 2). The experimental $\chi_{\mathrm{m}} T$ value

Figure 2. The plots of temperature dependence of $\chi_{m}(*)$ and $\chi_{m} T(\circ)$ values for 1 between 2 and 300 K .
(χ_{m} is the molar magnetic susceptibility, T is the temperature) of 1 at 300 K is $18.19 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ per formular unit, being consistent with the theoretical value ($18.15 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$) expected for fifteen uncoupled high-spin Ni^{2+} ions with $S=1$ and $g=$ 2.20. Upon cooling, the $\chi_{\mathrm{m}} T$ value slowly increases to $21.39 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ at 70 K , and then rapidly reaches the maximum of $62.86 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ at 2 K . This magnetic behaviour suggests that overall ferromagnetic interactions exist between the Ni^{2+} ions in $1 .{ }^{[15]}$ The temperature dependence of the reciprocal susceptibility ($1 / \chi_{m}$) obeys the Curie-Weiss law above 25 K (Figure S7 in the Supporting Information) with a positive Weiss constant $\theta=13.07 \mathrm{~K}$ and Curie constant $C=17.14 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, which further supports the existence of overall ferromagnetic coupling between the Ni^{2+} ions. In 1 , the magnetic interactions within Ni^{2+} ions are chiefly transmitted through the $\mu_{3}-\mathrm{O}$, $\mu_{3}-\mathrm{OH}$, and $\mu_{4}-\mathrm{O}$ bridges. Previous research suggests that the magnetic coupling is highly sensitive to the values of the $\Varangle \mathrm{Ni}$ -O-Ni bridging angles: the coupling is ferromagnetic for angles in the range of $90 \pm 14^{\circ}$, while it is antiferromagnetic for larger angles. ${ }^{[16]}$ The $\Varangle \mathrm{Ni}-\mathrm{O}-\mathrm{Ni}$ angles in 1 vary between 91.9(2) and $102.4(2)^{\circ}$, and are thus in the expected range for ferromagnetic coupling. Actually, such distribution motif of six octahedral Ni^{2+} ions was observed in the previous studies. ${ }^{[10-12]}$ In these studies, the magnetic behavior of the Ni_{6} clusters was investigated and the experimental and theoretical results showed that such nickel clusters exhibit ferromagnetic coupling interactions.

In summary, an unprecedented SrSiin-type 3D framework 2 based on $\mathrm{Ni}_{6} \mathrm{PW}_{9}$ SBUs and tetrahedral $\mathrm{WO}_{4}{ }^{2-}$ linkers was synthesized by hydrothermal methods. The experimental result testifies that the inorganic oxometal anionic $\mathrm{WO}_{4}{ }^{2-}$ group is an excellent linker to bridge TMSP clusters together giving rise to novel extended POM-based materials. The successfully synthesis of 1 not only enriches the structural diversity of TMSPs, but also provides an effective and feasible strategy to design and create more interesting POM structures. Investigations are underway to use other inorganic anionic linkers, such as $\mathrm{MoO}_{4}{ }^{2-}$, $\mathrm{MnO}_{4}^{-}, \mathrm{AsO}_{4}{ }^{3-}, \mathrm{SiO}_{4}{ }^{2-}$, to replace $\mathrm{WO}_{4}{ }^{2-}$ groups to make the novel extended frameworks under hydrothermal conditions. It is reasonable to believe that the present work will be impor-
tant in expanding the study of the construction of POM-based materials.

Experimental Section

Preparation of 1: $\mathrm{Na}_{9}\left[\mathrm{~A}-\alpha-\mathrm{PW}_{9} \mathrm{O}_{34}\right] \cdot n \mathrm{H}_{2} \mathrm{O}\left(\mathrm{PW}_{9}\right)$ was prepared by the literature method. ${ }^{[17]} \mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.300 \mathrm{~g}, 1.21 \mathrm{mmol})$ and $\mathrm{PW}_{9}(0.400 \mathrm{~g}, 0.16 \mathrm{mmol})$ were stirred in distilled water $(15 \mathrm{~mL}$, 833 mmol) for 5 min , forming a light yellow-green solution. enMe ($0.20 \mathrm{~mL}, 2.356 \mathrm{mmol}$) was added dropwise with continuous stirring. $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.300 \mathrm{~g}, 0.91 \mathrm{mmol})$ was added and the resulting mixture was stirred for 120 min . The resulting solution $\left(\mathrm{pH}_{\mathrm{s}}=\right.$ 8.1) was sealed in a 35 mL stainless steel reactor with a teflon liner steel autoclave, was heated at $170^{\circ} \mathrm{C}$ for 3 days, and then cooled to room temperature. Green prismatic crystals of 1 were obtained ($\mathrm{pH} \mathrm{H}_{\mathrm{e}}=7.9$). Elemental analysis calcd (\%) for $\mathrm{H}_{144} \mathrm{C}_{36} \mathrm{~N}_{24} \mathrm{O}_{95} \mathrm{P}_{2} \mathrm{Ni}_{15} \mathrm{~W}_{21}$: C 5.98, H 2.00, N 4.65; found: C 6.06, H 2.07, N 4.62 .

Acknowledgements

This work was supported by the NSFC (nos. 91122028, 21221001, 50872133, and 21101055), the NSFC for Distinguished Young Scholars (no. 20725101), and the 973 Program (nos. 2014CB932101 and 2011CB932504).

Keywords: chiral framework • cluster compounds • nickel • polyoxometalate
[1] a) N. V. Izarova, M. T. Pope, U. Kortz, Angew. Chem. Int. Ed. 2012, 51, 9492; Angew. Chem. 2012, 124, 9630; b) G. Absillis, T. N. Pa rac-Vogt, Inorg. Chem. 2012, 51, 9902; c) Q. X. Han, C. He, M. Zhao, B. Qi, J. Y. Niu, C. Y. Duan, J. Am. Chem. Soc. 2013, 135, 10186; d) X. Q. Huang, X. M. Zhang, D. Zhang, S. Yang, X. Feng, J. K. Li, Z. G. Lin, J. Cao, R. Pan, Y. N. Chi, B. Wang, C. W. Hu, Chem. Eur. J. 2014, 20, 2557; e) R. Schiwon, K. Klingan, H. Dau, C. Limberg, Chem. Commun. 2014, 50, 100.
[2] a) D. L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 2010, 49, 1736; Angew. Chem. 2010, 122, 1780; b) H. El Moll, G. Rousseau, A. Dolbecq, O. Oms, J. Marrot, M. Haouas, F. Taulelle, E. Rivière, W. Wernsdorfer, D. Lachkar, E. Lacôte, B. Keita, P. Mialane, Chem. Eur. J. 2013, 19, 6753; c) Y. C. Liu, F. C. Chun, S. T. Zheng, J. W. Zhao, G. Y. Yang, Dalton Trans. 2013, 42, 16676; d) H. Miao, X. Xu, W. W. Ju, H. X. Wan, Y. Zhang, D. R. Zhu, Y. Xu, Inorg. Chem. 2014, 53, 2757; e) C. Ritchie, A. Ferguson, H. Nojiri, H. N. Miras, Y.-F. Song, D.-L. Long, E. Burkholder, M. Murrie, P. Kögerler, E. K. Brechin, L. Cronin, Angew. Chem. Int. Ed. 2008, 47, 5609; Angew. Chem. 2008, 120, 5691.
[3] a) J. B. Benedict, R. Freindorf, E. Trzop, J. Cogswell, P. Coppens, J. Am. Chem. Soc. 2010, 132, 13669; b) F. Bannani, S. Floquet, N. Leclerc-Laronze, M. Haouas, F. Taulelle, J. Marrot, P. Kögerler, E. Cadot, J. Am. Chem. Soc. 2012, 134, 19342; c) C. L. Lv, R. N. Nasim Khan, J. Zhang, J. J. Hu, J. Hao, Y. G. Wei, Chem. Eur. J. 2013, 19, 1174; d) H. N. Miras, J. Yan, D.-L. Long, L. Cronin, Chem. Soc. Rev. 2012, 41, 7403; e) S.-T. Zheng, G.-Y. Yang, Chem. Soc. Rev. 2012, 41, 7623; f) R. Yu, X.-F. Kuang, X.-Y. Wu, C.-Z. Lu, J. P. Donahue, Coord. Chem. Rev. 2009, 253, 2872.
[4] a) A. Müller, S. K. Das, P. Kögerler, H. Bögge, M. Schmidtmann, A. X. Trautwein, V. Schünemann, E. Krickemeyer, W. Preetz, Angew. Chem. Int. Ed. 2000, 39, 3413; Angew. Chem. 2000, 112, 3555; b) A. M. Todea, A. Merca, H. Bögge, T. Glaser, J. M. Pigga, M. L. K. Langston, T. B. Liu, R. Prozorov, M. Luban, C. Schröder, W. H. Casey, A. Müller, Angew. Chem. Int. Ed. 2010, 49, 514; Angew. Chem. 2010, 122, 524.
[5] a) S. G. Mitchell, C. Streb, H. N. Miras, T. Boyd, D. L. Long, L. Cronin, Nat. Chem. 2010, 2, 308; b) S. G. Mitchell, T. Boyd, H. N. Miras, D. L. Long, L. Cronin, Inorg. Chem. 2011, 50, 136.
[6] a) H. An, Y. An, Y. G. Li, D. R. Xiao, E. B. Wang, C. Y. Sun, Cryst. Growth Des. 2006, 6, 1107; b) Y. F. Song, H. Abbas, C. Ritchie, N. McMillian, D.-L.

Long, N. Gadegaard, L. Cronin, J. Mater. Chem. 2007, 17, 1903; c) L. Marleny Rodriguez-Albelo, A. R. Ruiz- Salvador, A. Sampieri, D. W. Lewis, A. Gómez, B. Nohra, P. Mialane, J. Marrot, F. Sécheresse, C. Mellot-Draznieks, R. N. Biboum, B. Keita, L. Nadjo, A. Dolbecq, J. Am. Chem. Soc. 2009, 131, 16078; d) X. L. Wang, Y. G. Li, Y. Lu, H. Fu, Z. M. Su, E. B. Wang, Cryst. Growth Des. 2010, 10, 4227; e) B. Nohra, H. E. Moll, L. M. R. Albelo, P. Mialane, J. Marrot, C. Mellot-Draznieks, M. O'Keeffe, R. N. Biboum, J. Lemaire, B. Keita, L. Nadjo, A. Dolbecq, J. Am. Chem. Soc. 2011, 133, 13363; f) J. Thiel, C. Ritchie, H. N. Miras, C. Streb, S. G. Mitch ell, T. Boyd, M. N. C. Ochoa, M. H. Rosnes, J. Mclver, D.-L. Long, L. Cronin Angew. Chem. Int. Ed. 2010, 49, 6984; Angew. Chem. 2010, 122, 7138; g) C. Ritchie, C. Streb, J. Thiel, S. G. Mitchell, H. N. Miras, D.-L. Long, T. Boyd, R. D. Peacock, T. McGlone, F. Y. Li, J. Zhang, L. Cronin, Angew. Chem. Int. Ed. 2008, 47, 6881; Angew. Chem. 2008, 120, 6987.
[7] a) H. Zeng, G. R. Newkome, C. L. Hill, Angew. Chem. Int. Ed. 2000, 39, 1771; Angew. Chem. 2000, 112, 1841; b) C. P. Pradeep, M. F. Misdrahi, L. Xu, D. L. Long, T. B. Liu, L. Cronin, Angew. Chem. Int. Ed. 2009, 48, 8309; Angew. Chem. 2009, 121, 8459; c) C. P. Pradeep, F. Y. Li, L. Cronin, Chem. Eur. J. 2011, 17, 7472.
[8] a) S. T. Zheng, J. Zhang, J. M. Clemente-Juan, D. Q. Yuan, G. Y. Yang, Angew. Chem. Int. Ed. 2009, 48, 7176; Angew. Chem. 2009, 121, 7312; b) X. X. Li, S. T. Zheng, J. Zhang, W. H. Fang, G. Y. Yang, J. M. ClementeJuan, Chem. Eur. J. 2011, 17, 13032.
[9] a) Z. M. Zhang, Y. G. Li, Y. H. Wang, Y. F. Qi, E. B. Wang, Inorg. Chem. 2008, 47, 7615; b) S. T. Zheng, M. H. Wang, G. Y. Yang, Chem. Asian J. 2007, 2, 1380; c) J. W. Zhao, J. Zhang, S. T. Zheng, G. Y. Yang, Chem. Commun. 2008, 570.
[10] a) S. T. Zheng, J. Zhang, G. Y. Yang, Angew. Chem. Int. Ed. 2008, 47, 3909; Angew. Chem. 2008, 120, 3973; b) S. T. Zheng, J. Zhang, X. X. Li, W. H. Fang, G. Y. Yang, J. Am. Chem. Soc. 2010, 132, 15102.
[11] a) S. T. Zheng, D. Q. Yuan, H. P. Jia, J. Zhang, G. Y. Yang, Chem. Commun. 2007, 1858; b) J. W. Zhao, H. P. Jia, J. Zhang, S. T. Zheng, G.-Y. Yang, Chem. Eur. J. 2007, 13, 10030; c) J. W. Zhao, J. Zhang, S. T. Zheng, G. Y. Yang, Inorg. Chem. 2007, 46, 10944; d) Y. Y. Zheng, R. Wen, X. J. Kong, L. S. Long, R. B. Huang, L. S. Zheng, Dalton Trans. 2012, 41, 9871.
[12] L. Huang, J. Zhang, L. Cheng, G. Y. Yang, Chem. Commun. 2012, 48, 9658.
[13] a) H. M. Zhang, Y. G. Li, Y. Lu, R. Clérac, Z. M. Zhang, Q. Wu, X. J. Feng, E. B. Wang, Inorg. Chem. 2009, 48, 10889; b) S. W. Lin, W. L. Liu, Y. G. Li, Q. Wu, E. B. Wang, Z. M. Zhang, Dalton Trans. 2010, 39, 1740.
[14] M. N. Li, D. Y. Du, G. S. Yang, S. L. Li, Y. Q. Lan, K. Z. Shao, J. S. Qin, Z. M. Su, Cryst. Growth Des. 2011, 11, 2510.
[15] G. Triola, A. Llebaria, Angew. Chem. Int. Ed. 2001, 40, 1960; Angew. Chem. 2001, 113, 2014.
[16] a) J. M. Clemente-Juan, E. Coronado, J. R. Galán-Mascarós, C. J. GómezGarcía, Inorg. Chem. 1999, 38, 55; b) A. P. Ginsberg, J. A. Bertrand, R. I. Kaplan, C. E. Kirkwood, R. L. Martin, R. C. Sherwood, Inorg. Chem. 1971, 10, 240.
[17] A. P. Ginsberg, Inorg. Synth. 1990, 27, 100.

Received: September 15, 2014
Published online on November 28, 2014

[^0]: [a] Dr. X.-X. Li, Dr. W.-H. Fang, Prof. Dr. G.-Y. Yang
 State Key Laboratory of Structural Chemistry
 Fujian Institute of Research on the Structure of Matter
 Chinese Academy of Sciences, Fuzhou, Fujian 350002 (P. R. China)
 Fax: (+ 86) 591-8371-0051
 E-mail: ygy@fjirsm.ac.cn
 [b] Dr. J.-W. Zhao
 Henan Key Laboratory of Polyoxometalate Chemistry
 College of Chemistry and Chemical Engineering
 Henan University, Kaifeng, Henan 475004 (P. R. China)
 E-mail: zhaojunwei@henu.edu.cn
 [c] Prof. Dr. G.-Y. Yang
 MOE Key Laboratory of Cluster Science
 School of Chemistry, Beijing Institute of Technology
 Beijing 100081 (P. R. China)
 Fax: (+86) 10-68918572
 E-mail: ygy@bit.edu.cnSupporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem. 201405290.

