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A B S T R A C T

In this work, a series of pyrimidine/g-C3N4 photocatalysts has been synthesized via a facile solvothermal method
for the first time. The structure, elemental composition and morphology of the photocatalysts were characterized
by FT-IR, SEM, XPS, N2 adsorption-desorption isotherms and BET characterization methods. The photocatalytic
activity of the pyrimidine/g-C3N4 materials was investigated by the degradation of rhodamine solution under
visible-light illumination. The pyrimidine/g-C3N4 photocatalyst with 1 wt% of pyrimidine shows the highest
photocatalytic activity for the degradation of RhB, which can be mainly ascribed to the effective interfacial
charge transfer within the pyrimidine/g-C3N4 photocatalyst and the cooperation effect of the excellent contact
interface between g-C3N4 and pyrimidine. The main active species during the photodegradation process are
determined by the radical trapping experiments, proving that the superoxide radical (•O2

−) and the hydroxyl
radical (•OH) play the main role in the photocatalytic reactions.

1. Introduction

The environmental pollution is harmful to the living beings, so the
development of new high efficiency technology for the pollutant control
and pollutant elimination is necessary. In the past decades, the visible-
light responsive semiconductor based photocatalysts have gained con-
siderable interdisciplinary attention due to their potential environment
applications and diverse potential in energy, and the design of visible-
light-responsive photocatalyst is essential for the efficient utilization of
the solar energy. To date, developing a high quality semiconductor
photocatalyst has become a hot research area. Indeed, there were nu-
merous visible-light-responsive photocatalysts that have been reported
[1–6]. However, visible-light applications of these semiconductor
photocatalysts are restricted for some limitations, such as the large
band gap energy, high cost, and scarcity (especially noble metals)
[7–11]. Therefore, the graphitic carbon nitride (g-C3N4) as one non-
metal semiconductor has become a new star generation photocatalyst in
the research communities.

Due to its appealing electronic structure with a suitable band gap

(∼2.7 eV), good chemical and thermal stability [12,13], g-C3N4 has
attracted great interest as visible-light responded photocatalyst for
water splitting and organic pollutants degradation (such as rhodamine
B). However, the photocatalytic performance of g-C3N4 is severely
limited by the small surface area, rapid recombination of photoinduced
charge (electrons and holes). Recently, many research efforts have been
devoted to enhance the photocatalytic efficiency of the g-C3N4 under
visible-light irradiation, such as elements doping using the noble metal
[14] or nonmetallic elements [15], coupling with other different
semiconductors [16], and organic dye sensitization [17,18]. Among
these various strategies for visible-light harvesting, organic dyes (e.g.,
metal-porphyrins [3], poly (3-hexylthiophene) [17] and Erythrosin B
(ErB) [19]) have been widely used as photosensitizers due to its po-
tential applications in the fields of optical device and photocatalysis. In
particular, these dyes can dramatically extend the visible-light region of
the wide band-gap semiconductors. The pyrimidine ring as a six-
membered aromatic heterocycle with two nitrogen atoms is present in
various optical active compounds. It is worth noting that the 4,6-dis-
tyrylpyrimidine derivatives have found various applications in our
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daily life, i.e. organic semiconductors, visible-light harvesting system,
and optoelectronic materials [20]. Particularly, the 4,6-dis-
tyrylpyrimidine as the scaffold has been used to design the push-pull
structure for photonic materials [21]. However, to the best our
knowledge, the pyrimidine derivatives modified g-C3N4 has never been
reported until now.

In this work, we reported the preparation, characterization, optical
property and photocatalytic performances of the pyrimidine/g-C3N4

nanocomposites by varying the contents of pyrimidine for the first time.
The photocatalytic activity of the pyrimidine/g-C3N4 composites were
investigated by the degradation of rhodamine B (RhB) solution under
visible-light illumination. The pyrimidine/g-C3N4 photocatalyst with
1 wt% of pyrimidine shows the highest photocatalytic activity for the
degradation of RhB, resulting from the strong interfacial interactions
among the components. The optimal content of the pyrimidine for the
photocatalytic performances was also determined based on the photo-
catalytic reaction kinetics acquiring from the degradation of RhB so-
lution.

2. Experimental

2.1. Materials and reagents

RhB and dicyandiamide (C2H4N4) are provided by Shanghai
Sinopharm Chemical Reagent Co. Ltd, China. All other chemical re-
agents in this study are analytical grade and used without further
purification. Distilled water is used in all of our experiments. The 4,6-
bis(2-butoxy-4-(diethylamino)styryl) pyrimidine-2-ol (pyrimidine) was
prepared according to a previous literature [22].

2.2. Synthesis of pyrimidine/g-C3N4 composites

The g-C3N4 was obtained by the pyrolysis of C2H4N4 according to
the reported method [23]. The pyrimidine/g-C3N4 composites were
synthesized by a facile solvothermal technique. The g-C3N4 (40mg) and
a certain amount of pyrimidine were added into 25mL tetrahydrofuran
(THF), and subjected to ultrasound for 2 h to be completely dispersed,
and then stirred for 4 h under reflux. After cooling down to room
temperature, the solvent was removed by rotary evaporation, and then
the obtained products were dried under vacuum at room temperature
for 12 h. To study the influence of pyrimidine on the photocatalysis, the
content of pyrimidine added into the pyrimidine/g-C3N4 materials is
0.5 wt%, 1 wt%, 2 wt%, 2.5 wt%, and 3wt%, which are marked as
PC0.5, PC1, PC2, PC2.5 and PC3, respectively.

2.3. Material characterization

The as-prepared pyrimidine/g-C3N4 composites were characterized
by different techniques. Fourier Transform Infrared (FT-IR) spectra
were obtained on a MB 154S-FTIR spectrophotometer (Bomen, Canada)
using standard KBr pellet technique within the wavenumber range of
400–4000 cm−1. The scanning electron microscopy (SEM, S4800,
Hitachi Co., Japan) and transmission electron microscopy (TEM, JEOL,
JEM-2010F) were used to investigate the morphologies of the as-pre-
pared samples. The Brunauer-Emmett-Teller (BET) surface area of the
as-prepared samples was measured on a NOVA 2000e instrument. The
X-ray photoelectron spectroscopy (XPS) was taken on a RBD upgraded
PHIe5000C ESCA (PerkinElmer) electron spectrometer with a mono-
chromatic Mg Kα source, which was used to determine the composition
of the samples. UV–Vis diffuse reflection spectroscopy (DRS) were re-
gistered on a Varian Cary 500 spectrophotometer within the range of
200–800 nm, and the BaSO4 pellet was used as the reference at room
temperature. The steady-state photoluminescence (PL) spectra were
recorded with a Fluoro-Max-P spectrofluorimeter, and the excitation
wavelengths were 337 and 400 nm. To study the photoinduced carrier
behaviors of the samples, the photoelectrochemical tests including

transient photocurrent measurements and electrochemical impedance
spectroscopy (EIS) measurements were measured on an electrochemical
workstation (CHI 614D, CH Instrument). Both experiments were re-
corded using a classical three electrode quartz with 0.2 M Na2SO4

electrolyte solution.

2.4. Photodegradation experiments

The photocatalytic activity of the samples was investigated by the
degradation of RhB in aqueous solution under visible-light irradiation
supplied by a 350W Xe-lamp with a 420 nm cut-off filter (Nanshen
Company, Shanghai). All experiments were performed in a horizontal
quartz tubular reactor (length=28 cm, volume=160mL). A flat
quartz plate was employed to hold the photocatalysts. In general, some
catalyst (9 mg) was suspended in 30mL RhB (1.5×10−5 mol/L) aqu-
eous solution. In order to achieve the adsorption-desorption balance
between the RhB and the photocatalyst surface, the suspension was
stirred in the dark for 30min. During the photocatalytic decolorization
process, 3.0 mL of the reaction suspension was collected at certain time
intervals under visible light irradiation. After each photocatalytic re-
action, the catalyst was separated by centrifugation immediately.
Concentrations of RhB at different conditions were analyzed by re-
cording variations of the maximum absorption peak at 554 nm using a
UV–vis spectrophotometer (UV-2450, Shimadzu). To investigate the
role of the active species involved in the photocatalytic processes, and
the trapping experiments were performed using different sacrificial
agents.

3. Results and discussion

3.1. Structure, composition and morphology

In order to confirm the existence of pyrimidine in the as-prepared
pyrimidine/g-C3N4 composites, the FT-IR spectra were recorded, and
the results being shown in Fig. 1. For pure g-C3N4, there were five
absorption peaks at 1643, 1564, 1441, 1325 and 1239 cm−1, corre-
sponding to the typical CeN heterocyclic stretching modes. The ab-
sorption band at 805 cm−1 is related to the characteristic breathing
vibration of the tris-triazine rings [24–26]. In the case of the as-pre-
pared composites, the characteristic peaks for g-C3N4 still remain.
However, no characteristic peaks of pyrimidine can be observed in
Fig. 1, which may be due to the low loadings of the pyrimidine in the
as-prepared composites.

The SEM images of the as-synthesized g-C3N4, pyrimidine, and PC1

Fig. 1. FT-IR spectra of the as-prepared samples.
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were shown in Fig. 2. It can be seen that the g-C3N4 exhibits a lamellar
structure of agglomerates with a size of several micrometers (Fig. 2a).
The pyrimidine reveals a large quantity of irregular sheetlike porous
structure (Fig. 2b). After coupling with g-C3N4, significant structural
and morphological changes were observed for PC1 (Fig. 2c), implying
that the pyrimidine was successfully loaded onto the surface of g-C3N4.
The TEM images (Fig. S1 in Supporting Information) also confirmed
that the pyrimidine/g-C3N4 samples were synthesized successfully [24].
The introduction of pyrimidine significantly modified the morphology
structure of the g-C3N4, further creating massively intrinsic channels for
photogenerated holes and electrons due to the π-π interactions between
g-C3N4 and pyrimidine, which may lead to improved photodegradation
efficiency.

To further study the specific surface area and porosity, which were
considered as important factors for photocatalysis, the N2 adsorption
and desorption measurement were performed. As shown in Fig. 3, the
pure g-C3N4 and PC1 composite exhibit a typical IV isotherm, sug-
gesting that the existence of mesoporosity structure. The Brunauer-
Emmett-Teller (BET) surface area per unit mass of PC1 composite is
10.412m2 g−1, and the total pore volume is 0.072 cm3 g−1, which is
larger than that of pure g-C3N4 (7.954m2 g−1 and 0.065 cm3 g−1).
Although the surface area of PC1 is larger than that of g-C3N4, it is even
smaller when compared to other reported values [15,18]. Accordingly,
the increased surface in the present case may not play the main role for
the higher photocatalytic activity.

The XPS measurements were used to further study the chemical
components and the surface state of the as-prepared samples (Fig. 4).
The survey spectrum of the pyrimidine and PC1 were shown in Fig. 4a,
it can be found that the existence of C, N, and O elements in the PC1
composite, consistent with the chemical composition of the composite
material. Fig. 4b shows the N 1s spectrum of pure g-C3N4. Three peaks
located at approximately 398.37, 398.98 and 400.34 eV are observed

for g-C3N4. The peak at 398.37 eV can be ascribed to the C]NeC sp2-
bonded nitrogen unit. The peak at 398.98 eV corresponds to the tertiary
nitrogen N-(C)3 group, while the peak observed at 400.34 eV is assigned
to the secondary amino group CeNeH [27–29]. As shown in Fig. 4c,
the N 1s spectra of the pyrimidine exhibits two peaks at 398.61 and
400.02 eV, which is assigned to the N species in the CeN and C]N
bonds, respectively [30]. However, an obvious blue shift was observed
for the N 1s peaks of PC1 composite when compared to pure g-C3N4

(400.32, 398.32, and 398.96 eV). The C 1s spectrum of g-C3N4 (Fig.
S2a) shows three peaks located at 284.68, 287.93 and 288.46 eV, cor-
responding to the adventitious carbon, C]N bonds and CeN or C-(N)3
groups. The C 1s spectrum of pyrimidine demonstrates five peaks at
283.82, 284.26, 284.59, 285.07, and 285.8 eV in Fig. S2b. For PC1, five
peaks located at 284.18, 284.67, 285.18, 287.86 and 288.4 eV were
observed due to the hybridization of g-C3N4 with pyrimidine (Fig. S2c).
Similarly, a red-shift was also found for the O 1s spectrum of PC1 when
compared to pyrimidine (Fig. S3). These shift may be caused by the
interfacial interactions between the pyrimidine and pure g-C3N4, which
played an important role in promoting the transfer of photogenerated
electrons (e−) and holes (h+) within the photocatalyst [31].

3.2. Optical and photoelectrochemical properties

The optical characterization of pyrimidine/g-C3N4 nanocomposites
was examined by the UV–vis diffuse reflectance spectra (DRS) and PL
spectroscopy measurements. From the UV–vis absorption spectra
(Fig. 5a), the pure g-C3N4 exhibited a typical intrinsic absorption at
around 470 nm [32]. After the introduction of pyrimidine, the ab-
sorption edge of the PC1 showed a significantly enhanced background
absorption through the entire UV–vis region. Furthermore, a broad
visible light wave-band absorption is observed for PC1 composite,
which may be due to the pure pyrimidine possesses the high absorption
coefficient in the visible light region and/or the π-π stacking between g-
C3N4 and pyrimidine. It is recognized that the PC1 composite can be
excited more easily to promote photogenerated electron-hole pairs, and
then enhance the photocatalytic performance under visible light
[33,34]. The PL spectra was further employed to analyze the efficiency
of charge transfer and recombination of photogenerated electrons (e−)
and holes (h+) of the as-prepared samples. Fig. 5b shows the PL spectra
of the pure g-C3N4 and PC1 nanocomposite under the excitation wa-
velength of 377 nm. The pure g-C3N4 exhibits a strong PL emission peak
centered at around 462 nm because of the n-π* electronic transitions,
suggesting more recombination of photogenerated hole and electron
pairs on the surface of g-C3N4 [35]. However, the PC1 exhibits an ob-
viously blue-shift and significant fluorescence quenching due to the
presence of pyrimidine. Many researches indicated that lower photo-
luminescence intensity signified higher separation efficiency of charge
and electron-hole pairs, implying that the radiative recombination of
photogenerated electrons (e−) and holes (h+) is largely inhibited due
to the introduction of pyrimidine [36]. A similar result is observed for
g-C3N4 and PC1 upon excitation at 337 nm, the results being shown in
Fig. S4. Furthermore, to understand well the charge transfer dynamics
properties of the g-C3N4 and PC1, the time-resolved PL decay spectra

Fig. 2. SEM images of (a) g-C3N4, (b) pyrimidine, and (c) PC1.

Fig. 3. Nitrogen adsorption-desorption isotherms of g-C3N4 and PC1 composite.
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(Fig. S5) was recorded. The lifetime of the pure g-C3N4 and PC1 is
determined to be 0.87 and 5.69 ns, respectively. This result illustrated
that the introduction of pyrimidine can efficiently promote the se-
paration of the electron-hole pairs [37].

Based on the above experimental results, it is believed that the
charge separation and migration play a significant effect on the pho-
tocatalytic activity of semiconductor materials [31]. In order to better
understand the interfacial charge separation and transfer dynamics of g-
C3N4 and PC1 materials under the visible-light irradiation, the transient
photocurrent responses and EIS measurements were employed. Fig. 6a
displays the photocurrent-time (I-t) curves of g-C3N4 and PC1 upon the
visible-light irradiation. When the lamp was turned on, the photo-
current responses of the working electrodes increased sharply and then
reached a stable value, originating from the fast separation of the

photoinduced charge carriers. In contrast, when the lamp was turned
off, the photocurrent rapidly decreased to initial status, and maintains
its dark current state. As shown in Fig. 6a, the PC1 composite exhibits a
higher transient photocurrent response than pure g-C3N4, which implies
that the decrease of the photoinduced electrons and holes recombina-
tion, and thus the lifetime of the electron-hole pairs are extended ef-
fectively. Furthermore, the photoinduced charge transfer behaviors
were also studied by the EIS experiments. Fig. 6b shows the EIS results
of g-C3N4 and PC1 composite. The EIS arc radius of PC1 is significantly
decreased in comparison with that of pure g-C3N4. Hence, the in-
troduction of pyrimidine can greatly enhance the absorption wave-
length region and significantly improve the charge separation effi-
ciency, leading to high photocatalytic and photoelectric activity [38].

Fig. 4. (a) XPS patterns of the pyrimidine and the PC1 composite. High resolution XPS spectra: N 1s of (b) g-C3N4, (c) pyrimidine, and (d) PC1.

Fig. 5. (a) UV–Vis diffuse reflectance spectra of g-C3N4, pyrimidine, and PC1. (b) Steady-state photoluminescence spectra of g-C3N4 and PC1.
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3.3. Photocatalytic performance

The photocatalytic performance of the pure g-C3N4, pyrimidine and
the as-fabricated pyrimidine/g-C3N4 photocatalysts was assessed by the
degradation of RhB solution under visible-light illumination. As de-
picted in Fig. 7a, the contents of pyrimidine play an important effect on
the photocatalytic performance of the pyrimidine/g-C3N4 photo-
catalysts. The PC0.5, PC1 and PC2 exhibited an enhanced photo-
degradation efficiency of RhB. Moreover, the PC1 composite showed
the highest photocatalytic activity for the degradation of RhB solution
with a degradation rate of 92.1%, while only 61.5% and 25.9% of RhB
were degraded for pure g-C3N4 and pyrimidine within 135min. Un-
fortunately, when the content of pyrimidine further increased
(> 2.0%), the photocatalytic activity of the photocatalyst declined
gradually, which clearly suggest that the content of pyrimidine plays a

great influence on the photocatalytic activity of the pyrimidine/g-C3N4

composites. Too much pyrimidine on the surface of the g-C3N4 may
shield the g-C3N4 from absorbing visible light, then the lower light
harvesting caused a detrimental influence on the photogeneration of
electron-hole pairs, leading to the declined photocatalytic activity of
pyrimidine/g-C3N4 composites [39,40]. To quantitatively investigate
the photocatalytic reaction kinetics of the photocatalysts, the pseudo-
first-order kinetics model: ln (C/C0)= kt were used, where k (min−1)
represents the rate constant, C0 (mg/L) is the original concentration of
RhB, and C (mg/L) represents the concentration at illumination time t.
Fig. 7b shows the calculated k values of the as-synthesized samples for
the photodegradation of RhB, it shows that the PC1 composite exhibits
the maximum rate constant (k= 0.024 min−1), which is about 2.67
times higher than the pure g-C3N4 (k= 0.009 min−1).

In order to study the photocatalytic efficiency of PC1 more

Fig. 6. (a) Transient photocurrent responses and (b) EIS spectra of g-C3N4 and PC1 composite.

Fig. 7. (a) Photocatalytic degradation of the as-fabricated samples for the RhB solutions; (b) The kinetic constants of the different photocatalysts; (c) UV–vis spectral
changes of RhB solutions during the photodegradation by PC1; (d) Trapping experiments of active species in the system for the degradation of RhB solutions by PC1.
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intuitively, the time-resolved UV–vis absorption spectra of RhB solution
in the presence of PC1 was recorded in Fig. 7c. It can be found that
during the photodegradation process, the main absorption peak of RhB
at λ=554 nm decreases gradually as the irradiation time increases.
Meanwhile, the color changes from initial pink to colorless after
135min visible light irradiation, which indicate that the PC1 can make
the RhB completely decolorization. Moreover, a blue shift of the ab-
sorption peak of RhB is also observed with the irradiation time in-
creases, resulting from the formation of the N-deethylation and N-de-
methylation [41]. This results indicates that the RhB dye can be
degraded by the as-fabricated photocatalyst.

It is important to investigate the active species in the photocatalytic
process to understand well the degradation mechanism. Thus in this
study, we used three different scavengers, i.e. TBA, EDTA-2Na, and VC
to quench the •OH, h+ and •O2

−, respectively. As shown in Fig. 7d,
when the EDTA-2Na was added into the degradation system, the PC1
showed the highest photocatalytic activity for the degradation of RhB
solution, revealing that the h+ is not the main active radical in this
photodegradation process. However, when the TBA and VC were added
into the system, the degradation rates were decreased to be 52.44% and
33.68%, respectively, revealing that the •O2

− and •OH should be the
main active radicals in the photodegradation process [42–45]. In ad-
dition, the decreased degree of degradation rate upon addition of VC is
larger than that upon addition of TBA, implying that the •O2

− plays a
more important role than the •OH in the RhB photodegradation process.

Based on the DRS, EIS, PL analysis and radical trapping experi-
ments, a possible photodegradation mechanism for degradation of RhB
solution by the pyrimidine/g-C3N4 composites was presented in Fig. 8.
Upon the visible light irradiation, the photoexcited electrons would
transfer from the valence band (VB) of the pyrimidine to the conduction
band (CB), and then transfer to the CB of g-C3N4. At the same time,
these electrons can be trapped by the O2 near the surface of the com-
posites to generate •O2

−. The excess •O2
− may further take part in the

reaction to form •OH radicals [46], both of them can degrade the RhB
solutions. The experimental results, including PL, photocurrent and EIS
spectra, suggest that the introduction of pyrimidine is favorable for the
interfacial charge transfer, which can decrease the photoinduced elec-
tron-hole recombination, resulting in the improved photocatalytic
performance.

4. Conclusions

In this work, the pyrimidine/g-C3N4 photocatalysts have been syn-
thesized via a facile solvothermal method for the first time. The struc-
ture, elemental composition and morphology of the photocatalysts were
characterized by FT-IR, SEM, XPS, N2 adsorption-desorption isotherms
and BET characterization methods. The PC1 composite with 1 wt% of
pyrimidine shows the highest photocatalytic activity for the degrada-
tion of RhB solution with a degradation rate of 92.1%. The experi-
mental results suggest that the introduction of pyrimidine can promote
the interfacial charge transfer and decrease the photoinduced electron-
hole recombination, which is benefit to the photocatalytic performance.

This result provides new insights into the design of geC3N4ebased
photocatalysts with good performances.
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