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A B S T R A C T

A gas exfoliation strategy for controllable preparation of boron nitride (BN) nanosheets with few-layered
structure were reported. The green exfoliation process provides the BN nanosheets remarkable increment of
adsorption capacities to organic contaminants, which is ascribed to better exposure of active sites originating
from the larger surface area and thinner layer. Moreover, the prepared BN also exhibits outstanding recycl-
ability.

1. Introduction

In recent years, water pollution has turned to be a widespread
problem with the development of industry and agriculture [1,2]. Or-
ganic contaminants in wastewater, such as dyes [3–5] and antibiotics
[6,7], may cause significant health problems and environmental pol-
lution. Therefore, efficient removal of organic contaminants from
wastewater is a crucial topic for the environment. Currently, adsorption
[8–10] has been proved to be an efficient process. Developing novel
adsorbents with high adsorption capacity and simple synthesis process
is of critical importance.

Hexagonal boron nitride (h-BN) nanosheet is known as white gra-
phene with alternating boron and nitrogen atoms arranged in a hex-
agonal structure [11–13]. The unique properties [14–16], such as su-
perior thermal stability, oxidation resistance and excellent mechanical
strength, drive it to be an ideal candidate for the adsorption process.
However, the bulk BN suffers from the low specific surface area (SSA)
and poor exposure of active sites, making it holds less satisfying ad-
sorption capacity to organic contaminants. Thusly, mechanical cleavage
[17–19] and liquid-phase [20–22] exfoliation have been developed to
overcome the disadvantage. However, these processes are time-con-
suming, ungreen, and the yield is low. Therefore, designing a simple,
green, scalable method without using chemical solutions remains a
challenge. Recently, gas exfoliation has been developed by our group as

a simple and green strategy for the fabrication of few-layered 2D ma-
terials [23,24]. It was proved to be an efficient method without using
chemical solutions for the production of few-layered nanosheets on
large scale.

In this study, fewer-layered boron nitride nanosheets were suc-
cessfully designed and prepared by such green gas exfoliation strategy.
The as-prepared 2D nanomaterials showed promising performance for
the rapid removal of tetracycline (TC), gatifloxacin (GT), rhodamine B
(RhB) and methylene blue (MB) from aqueous with excellent reusa-
bility. The gas exfoliation approach offered an idea for the efficient
design of 2D materials as promising adsorbents for effective water-
treatment.

2. Experimental

2.1. Material

Commercial hexagonal boron nitride (h-BN, lateral size 1–10 μm)
was purchased from Sigma-Aldrich. Other reagents and solutions were
derived from Sinopharm Chemical Reagent without further purifica-
tion. Liquid nitrogen (L-N2) was supplied by Suzhou Jinhong Co., Ltd
(China).
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2.2. Fabrication of few-layer BN

Commercial BN (Com-BN, 1.0 g) was heated at 800 °C for 8min in a
muffle furnace under air atmosphere. Afterwards, the high-temperature
heated Com-BN was transferred into the polytetrafluoroethylene beaker
filled with liquid nitrogen (L-N2) and vibrated till the L-N2 gasified
completely. Then the solid powers were collected for the next cycle. The
above steps were repeated 15 cycles. Subsequently, the sample was
sonicated in ethanol for 0.5 h. Then the products were centrifuged at
1000 rpm for 10min to remove un-exfoliated bulk component. The
supernatant was concentrated and dried in vacuum overnight. Then
few-layer BN were achieved and marked as BN-15.

2.3. Characterization

FT-IR and Raman spectra were conducted on Nexus 470 (Thermo
Electron Corporation) and DXR Raman microscope (Renishaw Invia,

using 532 nm as an excitation source). The crystal phase characteristics
were recorded by powder X-ray diffraction using Bruker D8 dif-
fractometer (CuKα). Thermogravimetric analysis (TGA) was done on
STA-449C Jupiter (NETZSCH Corporation, Germany). The sample was
tested from room temperature to 800 °C with a heating rate of 10 °C/
min under air atmosphere with 60 L/min of air flowing. Morphology
was observed through scanning electron microscopy (JEOL JSM-7001F)
and transmission electron microscopy (JEOL JEM-2100). Atomic force
microscopy (AFM) was used to analyze interlayer information of ma-
terials by Asylum MFP-3D (Asylum Research Company). Brunauer-
Emmett-Teller (BET) method studies were carried out by Quadrasorb SI
(Quantachrome, USA).

2.4. Adsorption activity measurement

The adsorption performances of BN sample for organic pollutants of
tetracycline (TC), gatifloxacin (GT), rhodamine B (RhB) and methylene

Fig. 1. (a) TGA of Com-BN in air; (b) FTIR spectra of Com-BN and BN-15.

Fig. 2. SEM images of Com-BN (a) and BN-15 (b); TEM images of Com-BN (c) and BN-15 (d); STEM images of BN-15 (e).
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blue (MB) were evaluated with batches adsorption experiments. In a
typical adsorption experiment, 5 mg of adsorbents were added in 25mL
of TC solutions with concentration of 100 ppm and initial pH of 3.58.
Then the mixtures were shaken in a thermostatic water bath for a
period of time to reach adsorption equilibrium. The concentration of TC
was determined by a UV–vis spectrophotometer (UV-2501) based on
the standard curve after filtration. The other adsorption experiments
were operated in the same conditions but different organic pollutants of
GT (pH 7.44), RhB (pH 3.95), MB (pH 5.42), respectively. The ad-
sorption capacity (qt, mg/g) was calculated on the basis of Eq. (1).

=

−q C C V
m

( )
t

t0
(1)

where C0 and Ct are the initial and the t time concentrations of organic
pollutants in the test solution (mg/L), V is the volume of the solution
(L), and m is the weight of the adsorbent (g).

3. Results and discussion

To investigate the thermal stability of BN, TGA was measured under
air atmosphere (Fig. 1a). With the increasing of temperature, no ob-
vious weigh loss was found in TGA curve. IR was employed to contrast
the chemical structure of BN samples after exfoliation. The results were
showed in Fig. 1b, the peaks at 804 cm−1 and 1387 cm−1 were ascribed
to the stretching vibration of B–N and out-plan bending vibration of
B–N–B, respectively [25,26]. Both of the analysis indicated that the
physical and chemical structures were stable after high temperature
processing.

The morphology of BN-15 was illustrated via SEM and TEM (Fig. 2).
Compared with the initial Com-BN, the BN-15 held a smaller size and

thinner morphology. As shown in Fig. 2d, BN-15 exhibited an obvious
stack structure, and the inset in Fig. 2d showed the corresponding ty-
pical hexagonal symmetry electron diffraction structure of BN-15 [27].
A STEM image was shown in Fig. 2e, which exhibited a representative
terraced few-layered structure.

The height variation of surface profiles for the prepared BN-15 was
further characterized by AFM. Numerous nanosheets with diameters of
0–1 μm can be clearly seen in the AFM image (Fig. 3). The thickness of
the BN-15 was also found to be few-layered structure, and the minimum
thickness was about 1.1 nm. This result agreed with STEM character-
ization. For comparison, the thickness of Com-BN was further de-
termined by AFM in Fig. S1 and the thickness was found to be
25–42 nm, further proving that the gas exfoliation strategy decreased
the thickness of bulk BN remarkably.

The crystal and chemical structures of BN-15 were investigated by
XRD and Raman spectra. As shown in the XRD patterns in Fig. 4a the
intensity of (002) peak decreased significantly after exfoliation. The
obvious change in XRD spectra resulted from the reduction of ordered
stacking in the c direction [28]. This is consistent with the results in
SEM and TEM. The Raman spectra (Fig. 4b) showed that the E2g mode
of BN-15 shifted to 1365.42 cm−1 compared to Com-BN
(1364.81 cm−1). The slight change indicates the reduction of interlayer
interaction and the enhancement of in-plane strain after exfoliation
[29]. Furthermore, the full width half maximum (FWHM) of BN-15
(16.61 cm−1) was broader than that of com-BN (15.76 cm−1), sug-
gesting the decrease of the thickness of BN [30].

The N2 adsorption-desorption isotherms were shown in Fig. 4c. The
few-layered BN-15 nanosheets possessed of much larger SSA
(∼101m2/g) than that of Com-BN (∼20m2/g) because of the decrease
of thickness. Besides, the much thinner BN-15 could expose more active

Fig. 3. AFM image and the corresponding height profiles of BN-15.

Fig. 4. (a) XRD patterns, (b) Raman spectra, (c) Nitrogen adsorption-desorption isotherms of BN-15 and Com-BN.
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edge sites [31] for enhanced adsorption performance. The SSA of BN-15
nanosheet is lower than that of the previous work [23], which may lie
in the different precursor of Com-BN.

The mechanism of the L-N2 gas exfoliation had been discussed as
follows: According to the XRD data in Fig. 4a, the interlayer distances
(d) of BN were calculated from the (002) reflections by applying Bragg's
law (2dsinθ = n*λ), when θ = 26.62, the calculated d = 3.438Å. And
diameter of N2 is 3.64 Å (d’=3.64 Å). After infiltration of L-N2, the
heated BN facilitates the instantaneous gasification of L-N2. Then final
structure of h-BN layer is tilted because of the larger size of N2 (d’>d).
Moreover, exfoliation process would overcome the lip-lip interaction
and van der Waals force between layers. It's an endothermic process. So,
the thermophilic treatment is beneficial to exfoliate. And the produc-
tion yield of BN-15 with few-layered structure is about 14–18% by
weight. This process is environmental and green since N2 is an in-
expensive and nontoxic reagent. Meanwhile, there are no impurities left
in the product because of the evaporation of L-N2 after exfoliation.

The adsorption behavior of BN-15 sample was investigated with the
organics of TC, GT, RhB, and MB. The effect of contact time was in-
vestigated to obtain the equilibrium time. As shown in Fig. 5a, the
adsorption capacities of organic contaminants increased rapidly during

the initial period of testing time. The equilibrium almost achieved
within 60min. The pseudo-first-order and pseudo-second-order kinetic
models (Supplementary data, Section S1) were employed to fit the
adsorption data (Table 1). The adsorption of TC, GT, RhB, and MB on
BN-15 followed with the pseudo-second-order kinetic model (Fig. 5b),
unraveling that the adsorption process was dependent on the surface
sites of adsorbent and the amount adsorbed at equilibrium [32].

The adsorption capacities of different organic pollutants were in-
vestigated under the same condition. The results were shown in Fig. 5c.
BN-15 showed much higher adsorption capacities for TC (85mg/g), GT
(107mg/g), RhB (73mg/g) and MB (137mg/g) than that of Com-BN
(32, 75, 33 and 74mg/g, respectively). The significantly increased
adsorption capacity may result from the higher SSA and thinner layer.
The higher SSA and thinner layer caused better exposure of surface B
atoms and N atoms than the bulk one, and more solutes were adsorbed
on the surface of BN-15. So, we confirmed that the gas exfoliation of
bulk BN could increase active sites and enhance the adsorption capa-
city. Furthermore, a good reusability behavior of the adsorbent was
significant for the removal of organic pollutants. Owing to the superior
thermal stability of BN, the adsorbents can be recycled by heating at
600 °C for 2 h in a muffle furnace to remove the adsorbed organic

Fig. 5. (a) The effect of contact time, (b) the plots of the pseudo-second-order kinetic model, (c) the adsorption capacities of different organic pollutants onto the as-
prepared BN-15, and (d) the reusability of BN-15. (Condition: C0=100mg/L; T=298 K; m=5mg; V=10mL; pHTC=3.58, pHGT=7.44, pHRhB=3.95,
pHMB=5.42).

Table 1
Kinetic parameters for different organic pollutants adsorption onto BN-15.

Pseudo-first order Pseudo-second order

qe (mg/g) K1 (min−1) R2 qe (mg/g) t1/2 (min) K2 (g•mg−1min−1) R2

TC 61 0.032 0.88 91 5.58 0.0020 0.99
GT 69 0.033 0.88 112 4.94 0.0018 0.99
RhB 54 0.029 0.90 79 6.19 0.0021 0.99
MB 98 0.035 0.94 143 5.09 0.0014 0.99
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pollutants. BN-15 showed excellent reusability after eight times re-
cycling test (Fig. 5d).

The adsorption isotherms of TC, GT, RhB and MB onto BN-15 were
simulated by plotting equilibrium adsorption capacity (qe) versus
equilibrium concentration of organic pollutants (Ce), respectively.
Langmuir and Freundlich models (Supplementary data, Section S2)
were explored to simulate the adsorption isotherms and the results were
shown in Fig. 6 and Table 2. According to the correlation coefficient of
the two models, experimental data were well fitted with the Langmuir
model, which further suggested that the adsorption behavior was fol-
lowed by the monolayer coverage. The calculated maximum adsorption
capacities for TC, GT, RhB and MB onto the BN-15 were 137, 252, 124
and 222mg/g, respectively.

4. Conclusions

In conclusion, we proposed a simple gas exfoliation method to
synthesize few-layer BN, which presented an enhanced adsorption ca-
pacity to organic contaminants. More active sites associated with larger
SSA and thinner layer could capture more organic contaminants. BN-15

not only possessed superior adsorption behavior but also can be reused
for 8 times with a simple heat treatment. We expect this strategy can be
extended to other two-dimensional materials and provides an effective
approach for adsorption.
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