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A {Co4O4} Cubane Incorporated within a Polyoxoniobate Cluster

Zhijie Liang, Dongdi Zhang, Pengtao Ma, Jingyang Niu,* and Jingping Wang*[a]

Abstract: A novel octacobalt-containing polyoxoniobate,
Na6K12[H2Co8O4(Nb6O19)4]·39 H2O, has been prepared by
a combination of hydrothermal and diffusion methods.
The polyanion [H2Co8O4(Nb6O19)4]18¢ incorporates a tetra-
meric assembly of Lindqvist-type [Nb6O19]8¢ fragments
trapping a {CoII

4CoIII
4} cluster which comprises a central

{CoIII
4O4} cubane core, surrounded by another four CoII

ions linkers. Furthermore, magnetic measurements show
that the compound exhibits antiferromagnetic interac-
tions.

The design and synthesis of novel transition metal (TM)-con-
taining polyoxometalates (POMs), an important subclass of the
POM family, is predominantly driven by attractive magnetic
and photocatalytic properties.[1] However, the number of
known polyoxoniobates (PONbs) is less than those of other
POMs, owing to the basic nature of PONbs in aqueous
media.[2, 3] Generally, the synthetic strategy utilized to obtain
TM-containing PONbs has involved choosing a metal that is
base-soluble or protected by chelating ligands.[2b, 4] Examples of
this interesting type of PONb include copper-containing deriv-
atives {Cu24Nb56}[5] and {Cu25.5Nb56},[5] {CuNb11},[1b] titanium-con-
taining derivatives {Ti12Nb6},[6a] {TiNb9},[6b] and {Ti2Nb8},[6c] and va-
nadium-containing derivatives {V4Nb6},[4a] {V4Nb10},[7a]

{V3Nb12},[4c, 7b] {PV2Nb12},[7c] {V8Nb8},[7d] {PV6Nb12},[7e] and {VNb14}.[7f]

Some other TM-containing PONbs are also known, such as
{MNb9} (M = Co, Cr, Mn, Fe, Ni),[8a,b] {Cr2Nb10},[8c] {MnNb10},[8d]

{MNb12} (M = Co, Mn, Ni),[9a,b] and {Co14Nb36}.[4b] Among the
aforementioned TM-containing PONbs, titanium-substituted
and vanadium-incorporating derivatives have been widely in-
vestigated. Moreover, the titanium and vanadium ions in the
reported compounds are mostly of d0 electron configuration.
In contrast, incorporating TMs having d electrons may lead to
interesting properties, such as magnetic and electro-optical
properties. Whereas complexes of polyoxotungstates and poly-
oxomolybdates incorporating a larger number of Co ions have

been reported (Table S1 in the Supporting Information), re-
ports of Co analogues in PONbs are still very rare.

In the course of our ongoing investigation into large Nb–
oxo clusters based on the Lindqvist-type anion [Nb6O19]8¢ and
TM ions,[1b, 4b, 5] we present herein the tetrameric Co-containing
PONb-based Na6K12[H2Co8O4(Nb6O19)4]·39 H2O (1), which con-
tains an octanuclear mixed-valent cluster including an append-
ed {CoIII

4O4} cubane motif. To our knowledge, compound 1 rep-
resents the first member of the mixed-valent PONb-based Co
family. It was obtained by the hydrothermal reaction of
K7HNb6O19·13 H2O and CoCl2·6 H2O with NH3 in aqueous
medium, followed by the diffusion method. Although hydro-
thermal and test tube diffusion method has been separately
used in the syntheses of PONbs.[1b, 4c, 10] However, the combina-
tion is quite rare.

To investigate the source of Co3+ in the compound,
CoCl2·6 H2O was replaced in the reaction mixture by Co3O4. Un-
fortunately, no crystal was obtained. We speculated that a part
of the Co2 + ions were oxidized to Co3 + ions as a result of air
oxidation by vigorous stirring in the alkaline PONb solution
during the reaction. The balanced chemical reaction for the
formation of the polyanion [H2Co8O4(Nb6O19)4]18¢ (1 a) is given
in Equation (1):

8 ½CoIILn¤ þ 4 ½HNb6O19¤7¢ þ O2 þ 6 OH¢ !
½H2Co8O4ðNb6O19Þ4¤18¢ þ 8n Lþ 4 H2O

ð1Þ

where ligand L = NH3. To explore the role of the ligand and the
influence on configuration, a series of experiments were car-
ried out. Compound 1 could be formed by using 1,10-phenan-
throline instead of NH3 as the ligand (Scheme 1). However,
when using ethanediamine or 1,3-diaminopropane as ligands,

Scheme 1. The effect on experimental results of changing ligands.
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yellow crystals and purple crystals were obtained, respectively
(see Scheme 1). Compound 1, however, can be crystallized
without the need for organic ligands, in contrast to reports in-
dicating an essential stabilizing role of organic ligands in the
formation of TM-containing PONbs.[2b, 4]

Bond valence sum[11] (BVS) calculations for 1 indicate that
the values for Co ions fall into the ranges 2.07–2.12 and 3.12–
3.20 (Table S2 in the Supporting Information), confirming that
both + 2 and + 3 oxidation states are in the compound, in
good agreement with the results of X-ray photoelectron spec-
troscopy (XPS; Figure S1 in the Supporting Information).

Single-crystal X-ray diffraction analysis of the obtained black
crystals shows that 1 crystallizes in the monoclinic space group
P2/c. The gigantic polyanion 1 a has dimensions of about 16 Õ
16 æ2 (Figure S2 in the Supporting Information). In the struc-
ture of 1 a, [H2Co8O4(Nb6O19)4]18¢ (Figure 1 a), there is a {Co8}

cluster (Figure S3 in the Supporting Information), which can be
regarded as a distorted {CoIII

4O4} cubane attached to four
“outer” CoII cations via the four oxygen atoms of {CoIII

4O4} (Fig-
ure 1 b,c). This distorted cubane-shaped, mixed-valent cobalt–
oxo cluster, {CoIII

4O4}, consists of four CoIII centers with four m4-
O2¢ anions acting as bridging ligands, which has already been
reported for cobalt clusters.[12] In its simplest form, the extend-
ed cubane unit can therefore be regarded as a {Co8O4} core.
Co1, Co1A, Co3, and Co3A lie in one plane. Co2, Co2A, Co4
and Co4A lie in the other plane. The {Co8} cluster exhibits ide-
alized C2v symmetry (Figure 1 b). The {CoIII

4O4} cubane is distort-
ed with Co-O-Co angles of 96.8(3)-98.3(3)8, O-Co-O angles of
81.7(3)–94.9(3)8 and the Co–O distances fall into the range of
1.915(6)–1.955(6) æ. Interestingly, the four independent cobalt
ions in 1 a display coordination geometries in two distinct

ways; the CoIII ions form distorted CoO6 octahedra with three
bridging oxygen atoms from the same [Nb6O19]8¢ cluster and
three oxygen atoms from {CoIII

4O4} cubane, whereas the oxida-
tion state of the tetracoordinated cobalt is + 2, which is de-
fined by three terminal oxygen atoms from three [Nb6O19]8¢

clusters and one oxygen atom from {Co4O4} cubane. As men-
tioned above, the reason that the presence of CoIII centers in
1 a is attributed to air oxidation. Interestingly, mixed-valent
cobalt clusters are very rare among POMs.[13] Furthermore, two
protons should be added for charge-balance considerations
and the BVS values of all oxygen atoms in 1 a suggest that the
protons delocalize over the entire architecture (Table S3 in the
Supporting Information).

Furthermore, the overall architecture, exhibiting an approxi-
mate Td symmetry, can be considered an octanuclear{Co8} clus-
ter stabilized by four classical [Nb6O19]8¢ building blocks
(Figure 2). Four [Nb6O19]8¢ units are bridged by four cobalt(II)

ions. The total charge of 1 a is 18¢, which is balanced in the
solid state by 12 potassium and 6 sodium counter cations. No-
tably, if each [Nb6O19]8¢ units acts as a node, four [Nb6O19]8¢

units are located in the four vertices of a tetrahedron. The
{CoIII

4O4} cubane resides in the center of this tetrahedron, while
four CoII cations are situated outside it (Figure 1 d). It differs
from [Fe13.5(PW9)4] .[14] The two sets of cobalt environments,
Co1, Co1A, Co2, Co2A and Co3, Co3A, Co4, Co4A, each exhibit
severally tetrahedral geometries. Therefore, the structure incor-
porates three tetrahedra, which is unique in PONbs. Neighbor-
ing units link together forming a one-dimensional chain in the
ab and bc plane [O78-K1-O40 98.1(2)8, O79-K15-O39 126.0(4)8] ,
and then form a two-dimensional plane via a series of potassi-
um–oxygen and sodium–oxygen bonds [O75-K7-O47 114.0(3)8,
O35-K6-O1 113.5(3)8, O33-K8-O7 116.6(3)8 ; Na1¢O9W
2.407(10) æ, K2¢O11 2.825(8) æ; Figure S4 in the Supporting In-
formation]. The formula is based on three different analytical
methods, namely single-crystal X-ray diffraction, elemental
analysis, and thermogravimetric analysis (TGA). The TGA indi-
cated the presence of 39 water molecules in the crystal struc-
ture of 1 a (Figure S5 in the Supporting Information).

Note that 1 a resembles structurally the {Co14Nb36} cluster
previously reported by our group.[4b] In the latter case, the
structure is composed of six [Nb6O19]8¢blocks and a {Co14} clus-
ter that contains a double-cubane core, {Co7O2(OH)6}4+ and
seven external Co ions. Six cobalt ions in this {Co7} core are

Figure 1. a) Ball-and-stick representation of 1 a ; b) simplified view of the
{Co8O4} core; c) coordination geometry of the external CoII ions; d) poly-
hedral/ball-and-stick view of the linking model of {CoIII

4O4} cubane, CoII
4 tet-

rahedron, and PONb. All hydrogens, potassium ions, sodium ions, and lattice
water molecules are omitted for clarity.

Figure 2. Representations of the various building blocks of 1 a : polyhedral
structure of the [Nb6O19]8¢ unit and {Co8}.
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connected to each [Nb6O19]8¢ unit by three bridging oxygen
atoms, forming the main skeleton. Both 1 and {Co14Nb36} con-
tain cubane cores and Lindqvist-type anions {Nb6O19}, with the
difference that the former contains mixed CoII and CoIII ions
and the latter contains only CoII ions. The {Co14Nb36} cluster
comprises two trigonal-antiprismatic fragments. However,
1 contains three tetrahedra. In addition, the types of coordina-
tion geometry for cobalt ions are markedly different.

The solid-state magnetic susceptibility of 1 was studied in
the range of 2–300 K under an external magnetic field of
2000 Oe (Figure 3). The cmT value of 1 gradually declines with

decreasing temperature and reaches a minimum of 2.30 emu
mol¢1 K at 2 K. The effective moment cmT decreases continu-
ously with decreasing temperature, indicating the presence of
antiferromagnetic exchange interactions, which is further con-
firmed by a negative Weiss constant q=¢9.16 K derived by fit-
ting the Curie–Weiss law to the magnetic data between 2 and
300 K (Figure S6 in the Supporting Information). Such antiferro-
magnetic coupling with a cubane core has been previously re-
ported.[15] The value of cM increases from 0.03 emu mol¢1 at
300 K to 0.18 emu mol¢1 at 40 K, and then exponentially in-
creases to reach a maximum of 1.15 emu mol¢1 at 2 K.

Based on the coordination pattern of the Co ions, CoII ions
represent d7 high-spin centers whereas CoIII ions are d6 low-
spin (S = 0). The unpaired electrons will be on the CoII centers.
From the perspective of magnetism, therefore, compound 1 is
effectively tetranuclear. This observation has also been previ-
ously reported.[16] When the cmT value of 9.12 emu mol¢1 K at
room temperature (300 K) is compared with that of the spin-
only value of 7.50 emu K mol¢1 for 4 non-interacting CoII ions
(S = 3/2) with g = 2.0, we can see that there is spin–orbit cou-
pling.[17]

In summary, a novel tetrameric PONb has been successfully
constructed by a new synthetic strategy. This is the first mixed-
valence cobalt aggregate in PONb chemistry, and the second
largest example of a Co-containing PONb. This synthetic strat-
egy could potentially be extended beyond the synthesis of
1 to construct further novel frameworks based on other TMs.

Further possibilities for the assembly of nickel-, manganese-,
and iron-containing PONbs are under consideration in our
group.

Experimental Section

Synthesis of 1

Method 1: NH3 (0.320 mL) was added to a stirred solution of
CoCl2·6 H2O (0.068 g, 0.284 mmol) in water (1.25 mL). The resulting
solution was added dropwise to a stirred aqueous solution (10 mL)
containing K7HNb6O19·13 H2O (0.525 g,0.385 mmol) and the pH
value was adjusted to 12.00 by addition of NaOH solution
(2 mol L¢1). The resulting suspension was transferred to a Teflon-
lined autoclave and kept at 160 8C for 22 h. After slow cooling to
room temperature, a dark green solution was obtained, filtered,
and then transferred to a straight glass tube. Diffusion between
three phases produced black virgate-shaped crystals after two
weeks. Yield: 10 % (based on K7[HNb6O19]·13 H2O). IR (KBr pellet):
893, 870, 718, 537, 506 cm¢1 (Figure S8 in the Supporting Informa-
tion); elemental analysis (%) calcd for K12Na6H80Co8Nb24O119 : Co
8.91, K 8.86, Na 2.61, Nb 42.12; found: Co 8.67, K 9.03, Na 2.34, Nb
41.65.

Method 2: Same procedure as for method 1, except in the absence
of NH3. The pH value was adjusted to 12.50 by addition of NaOH
solution (2 mol L¢1). Yield: 13 % (based on K7[HNb6O19]·13 H2O).

Method 3: 1,10-phenanthroline (0.033 g, 0.183 mmol) was added
to a stirred solution of CoCl2·6 H2O (0.090 g, 0.378 mmol) in water
(0.833 mL). The resulting solution was added dropwise to a stirred
aqueous solution (10 mL) containing K7HNb6O19·13 H2O
(0.667 g,0.489 mmol) and the pH value was adjusted to 12.00 by
addition of NaOH solution (2 mol L¢1). The resulting suspension
was transferred to a Teflon-lined autoclave and kept at 160 8C for
22 h. After slow cooling to room temperature, a dark green solu-
tion was obtained, filtered, and then transferred to a straight glass
tube. Diffusion between three phases produced black virgate-
shaped crystals after two weeks. Yield: 9 % (based on
K7[HNb6O19]·13 H2O).
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