Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

1,4-Naphthalenedicarboxylic acid functionalized phosphomolybdate: Synthesis, crystal structure and optical properties

You-Jing Huang-Fu^a, Xue-Yan Chen^a, Wei Yang^a, Yan Bai^{a,b,*}, Dong-Bin Dang^{a,*}

^a Key Laboratory of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China ^b State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO

Article history: Received 4 February 2015 Accepted 21 April 2015 Available online 30 April 2015

Keywords: Polyoxometalate Carboxylic acid Crystal structure Luminescence

1. Introduction

Polyoxometalate (POM) is a polyatomic ion, that consists of three or more group 5 or group 6 transition metal oxyanions linked together by shared oxygen atoms to form a large, closed 3dimensional framework [1,2]. Currently, POMs are an attractive and vast class of inorganic materials with a virtually unmatched range of physical and chemical properties applicable to diverse areas of research such as catalysis, photochemistry, sorption, biology and medicine [3–5]. A great deal of interest has arisen in the modification and functionalization of POMs as a result of their unique structures and fascinating optical, electronic, and magnetic properties [6–8]. In this sense, the introduction of functional organic components to POMs via covalent bonds is an efficient and attractive synthetic approach, since the desired physical properties can be imparted to target products [9–11]. Examples suggest that carboxylic acids are a better selection for constructing the functionalization of POMs, due to their oxygen donors are more likely to substitute for the terminal oxygen atoms of POMs forming metal – oxygen – carbon connectivity combination [12-14]. In this kind of composite, some benzenecarboxylic acids and aliphatic carboxylic acids were selected, and their coordination to metal atoms of POMs leads to a variety of

E-mail addresses: baiyan@henu.edu.cn (Y. Bai), dangdb@henu.edu.cn (D.-B. Dang).

http://dx.doi.org/10.1016/j.matlet.2015.04.102 0167-577X/© 2015 Elsevier B.V. All rights reserved. ABSTRACT

One inorganic–organic hybrid phosphomolybdate $H_{12}[(PMo_6O_{21})_2(1,4-NDC)_3] \cdot 37.5H_2O$ (1) (1,4- $H_2NDC=1,4$ -naphthalenedicarboxylic acid) has been synthesized and well-characterized. Compound 1 exhibits a lantern-type dimer constructed by Mo-O-C bonds between a couple of $[PMo_6O_{21}]^{3-}$ polyoxoanions and three 1,4- NDC^{2-} ligands, and displays obvious fluorescent emission at room temperature as a result of the use of functional organic component. The spectroscopic experiments show that compound 1 displays a sensitive and reversible fluorescence response to the pH values in the aqueous solution.

© 2015 Elsevier B.V. All rights reserved.

carboxylate-functionalized polyanions [13,14]. However, introducing functional carboxylic acid to the design of luminescent POMs-based hybrid species is rare. The luminescence, with huge technical potential, brings about high speed development and widespread applications in display, lighting, sensing and optical devices [15]. POM-based hybrids have attracted considerable attention in the fields of luminescent materials, since the properties of products can be adjusted by the judicious choice of conjugated organic groups and POM units. In the present study, we opted to use 1,4-naphthalenedicarboxylic acid as functional component to synthesize a POMbased inorganic-organic hybrid compound H₁₂[(PM0₆O₂₁)₂(1,4-NDC)₃] · 37.5H₂O (1). The title compound exhibits luminescent emission at room temperature in H₂O solution and in the solid state, respectively. The luminescence recognition behaviors suggest that the emission intensity of compound **1** is dramatically affected by the pH values of the solution.

2. Experimental

Synthesis: $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (0.86 mmol), 1,4-naphthalenedicarboxylic acid (1,4-H₂NDC) (1.5 mmol) and H₃PO₃ (1 mmol) were dissolved in water (15 mL), and then the mixture was stirred approximately 2 h at 72 °C. After cooling to room temperature, the resulting solution was filtered and left for slowly evaporation at room temperature to obtain colorless block crystals **1** suitable for single crystal X-ray structure determination after about four weeks. Yield: *ca*. 54% for **1** (based on H₃PO₃). The general chemical formula sum is C₃₆H₆₉Mo₁₂P₂O_{91.50}. Anal. Calcd(%): C, 13.60; H,

materials letters

^{*} Corresponding authors at: Key Laboratory of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China. #Tel./ fax: +86 371 23881589.

2.19; Mo, 35.81; P, 1.93. Found: C, 13.44; H, 2.37; Mo, 33.66; P, 2.02. IR (cm⁻¹, KBr pellet): 3450(s), 3172(s), 2417(w), 1627(m), 1562(s), 1461(s), 1421(s), 1372(s), 1264(w), 1212(w), 1167(w), 1074(s), 1000 (w), 933(s), 897(s), 835(m), 798(m), 684(s), 567(m).

3. Results and discussion

Description of the crystal structure of compound **1**: Compound **1** exhibits a lantern-type dimer by coordinative connectivity combination between a couple of $[PMo_6O_{21}]^{3-}$ polyoxoanions and three 1,4-NDC²⁻ ligands (Fig. 1). Analogous to the reported structure, all of the carboxyl groups are both in $\mu_2-\eta^{1:}\eta^1$ fashion to connect molybdenum centers via Mo-O-C bonds, obtaining a carboxylatefunctionalized heteropolyanion [13]. It is worth pointing out that, the other side of the naphthalene rings is spread outside the dimer for forming a lantern-type structure. On the other hand, three types of C-H···O hydrogen bonds and one type of C-H··· π interaction are found in compound **1**, which plays an important role in stabilizing the structure [16–18]. The C···M separation and C-H···M angle is 4.00 Å and 127.9°.

 $[PMo_6O_{21}]^{3-}$ polyoxoanion of **1** is a well-known α -Anderson structure composed of six corner- or edge-sharing MoO₆ octahedra (Fig. S1). The central P atom is surrounded by three μ_3 -O atoms with the average P-O distance of 1.527 Å and the O-P-O angles of 111.3

Fig. 1. The illustration of the lantern-type dimer for compound **1** showing C(5)–H (5A)···O(2) (pink), C(11)–H(11A)···O(4) (green) and C(17)–H(17A)···O(6) (turquoise) hydrogen bonds in dashed lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

 $(3)-111.9(3)^{\circ}$. The MoO₆ octahedra are distorted, with Mo-O distances that can be grouped into four ranges depending on the kind of oxygen atoms bound to the molybdenum atoms. The longest distance is that towards the triply bridging oxygen atoms in the range of 2.330(4)-2.362(5) Å. The distances between the molybdenum atoms and the oxygen atoms from six O-C bonds are in the range of 2.270(5)-2.322(4) Å. The doubly bridging and the terminal oxygen atoms are at distances from the molybdenum atoms of 1.703 (5)-1.717(5) Å and 1.898(5)-1.947(5) Å, respectively.

X-ray powder diffraction: To confirm whether the crystal structure is truly representative of the bulk material, the X-ray powder diffraction patterns of **1** were recorded. The peak positions of experimental patterns are in good agreement with the corresponding simulated ones, demonstrating the phase purity of the products (Fig. S2). The dissimilarities in intensity may be due to the preferred orientation of the crystalline powder samples.

Optical band gap: The UV–vis absorption spectrum of **1** in solid state shows two strong absorption peaks at 236 nm and 310 nm (Fig. S3). The higher energy spectral band can be assigned to $p\pi$ (Oterminal)– $d\pi$ *(Mo) electronic transitions in the Mo=O bonds, whereas the lower energy spectral band can be attributed to $d\pi$ - $p\pi$ - $d\pi$ electronic transitions between the energetic levels of the Mo–O–Mo bonds [19].

In order to explore the conductivity potential of 1, the measurement of diffuse reflectance spectrum for powder sample was conducted to obtain the band gap (E_g) . The band gap is determined as the intersection point between the energy axis and the line extrapolated from the linear portion of the absorption edge in a plot of Kubelka–Munk function F, $F = (1-R)^2/2R$ (R is the reflectance of an infinitely thick layer at a given wavelength), against energy E. The optical absorption related to the E_{g} value can be accessed at 3.38 eV, exhibiting the energy value of an electron from the highest valence band to the lowest conduction band. which shows the nature of semiconductivity for 1 (Fig. 2) [20]. Compared with the reported POM-based inorganic-organic hybrid solids $[(H_2 toym)_4(Mo_8O_{26})_2] \cdot 15H_2O$ ($E_g = 2.99 \text{ eV}$) (toym=2,4,6tris[1-(4-oxidroxypyridinium)-ylmethyl]-mesitylene), and (n- $Bu_4N_2[Mo_6O_{17}(NAr)_2]$ ($E_g=2.25 \text{ eV}$) (Ar=o-CH₃OC₆H₄), compound **1** shows a wider band gap [21,22].

Luminescence properties: A strategy of the incorporation of 1,4naphthalenedicarboxylic acid into POM-based system is anticipated to obtain functional hybrid materials with excellent optical properties, in which naphthalene ring could act as the chromophoric group of a photochemically active compound. As we expected, compound **1** shows luminescent emission maximum at 403 nm (λ_{ex} =300 nm) in the solid state (Fig. 2) and 428 nm (λ_{ex} =330 nm) in aqueous solution (Fig. S4), respectively, which may be assigned to the intraligand π *- π charge transfer. Compared to the free ligand 1,4-H₂NDC with the emission peak of 472 nm, obvious blueshift may result from the formation of Mo-O-

Fig. 2. Diffuse reflectance UV-vis spectrum of K-M function versus E (left) and luminescent spectrum (right) of compound 1 in solid state.

Fig. 3. pH-dependent fluorescence responses of **1** in aqueous solution. pH=2.18, Black; 2.34, Pink; 2.62, Olive; 2.77, Orange; 3.17, Blue; 4.02, Red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

C bonds between $[PMo_6O_{21}]^{3-}$ polyoxoanions and ligands. These results have been commonly observed in other 1,4-H₂NDC-containing systems [23–25].

The influence of the pH value on the luminescence properties of compound 1 was studied in the aqueous solution, as shown in Fig. 3. The solution was adjusted using HCl solution. The reactions were conducted at room temperature for 2 min, and then the luminescence spectra were monitored, respectively. Upon the addition of H⁺, the emission intensity of compound **1** significantly increases at 428 nm. As the pH value is reduced to 2.18, the emission intensity of the system increases by about 28 times (I/ $I_0 = 27.52$, where I_0 and I are the fluorescence emission intensities of before and after H⁺ was added, respectively). When the pH value less than 2.18, nearly no change is observed for the emission intensity. And then NaOH solution was added to the above solution (pH=2.18). The emission intensity of compound 1 significantly decreases at 428 nm with increasing added NaOH solution. When the pH value is 4.02 the fluorescence of the system is almost completely quenched (Fig. S5). These experiments reveal that the process of consecutive addition of HCl or NaOH is reversible, which is important for probe material.

The ³¹P NMR spectra of **1** in aqueous solution indicate the structure remains stable over a period of 3 days (Fig. S6). Otherwise, the solution of compound **1** in various pH values has also been measured via UV-vis spectra, indicating the structure is still stable in the pH range of 2.18–4.96 in 3 days (Fig. S7). As a result, it may be concluded that compound **1** displays a sensitive and reversible fluorescence response to the pH values in the aqueous solution and would be used as pH probe.

4. Conclusion

In summary, we presented a carboxylate-functionalized lantern-type phosphomolybdate exhibiting interesting fluorescence as a result of the introduction of 1,4-naphthalenedicarboxylic acid ligand. Notably, compound **1** exhibits a sensitive and reversible fluorescence response to the pH values in the aqueous solution, and it may be an excellent candidate for pH probe. Herein, we have demonstrated an effective strategy to yield fluorescent POM-based compounds in which functional organic acids are introduced into hybrid systems, which subsequently give access to design such compounds into optical functional materials.

Acknowledgments

This work was supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (134100510004), the Natural Science Foundation of Henan Province (122300410014), the Foundation of the Education Department of Henan Province of China (14A150022) and the Foundation Co-established by the Province and the Ministry of Henan University (SBGJ090517).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.matlet.2015.04.102.

References

- Zhan CH, Cameron JM, Gao J, Purcell JW, Long DL, Cronin L. Angew Chem Int Ed 2014;53:10362–6.
- [2] Cadot E, Sokolov MN, Fedin VP, Simonnet-Jégat C, Floquet S, Sécheresse F. Chem Soc Rev 2012;41:7335–53.
- [3] Han XB, Zhang ZM, Zhang T, Li YG, Lin WB, You WS, et al. J Am Chem Soc 2014;136:5359–66.
- [4] Huang L, Wang SS, Zhao JW, Cheng L, Yang GY. J Am Chem Soc 2014;136:7637–42.
- [5] Miras HN, Yan J, Long DL, Cronin L. Chem Soc Rev 2012;41:7403-30.
- [6] Dang DB, Zheng GS, Bai Y, Yang F, Gao H, Ma PT, et al. Inorg Chem 2011;50:7907–9.
- [7] Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Chem Soc Rev 2014;43:4615-32.
- [8] Mirzaei M, Eshtiagh-Hosseini H, Alipour M, Frontera A. Coord Chem Rev 2014;275:1–18.
- [9] Lv C, Khan RNN, Zhang J, Hu JJ, Hao J, Wei YG. Chem Eur J 2013;19:1174–8.
- [10] Zhu Y, Yin PC, Xiao FP, Li D, Bitterlich E, Xiao ZC, et al. J Am Chem Soc 2013;135:17155-60.
- [11] Zhang JW, Huang YC, Zhang J, She S, Hao J, Wei YG. Dalton Trans 2014;43:2722–5.
- [12] Yang DH, Li SZ, Ma PT, Wang JP, Niu JY. Inorg Chem 2013;52:8987-92.
- [13] Yang DH, Li SZ, Ma PT, Wang JP, Niu JY. Inorg Chem 2013;52:14034-9.
- [14] Yang DH, Liang YF, Ma PT, Li SZ, Wang JP, Niu JY. Inorg Chem 2014;53:3048–53.
- [15] Cui YJ, Yue YF, Qian GD, Chen BL. Chem Rev 2012;112:1126-62.
- [16] Lehn JM. Angew Chem Int Ed 1988;27:89–112.
- [17] Zhang H, Yu K, Wang CM, Su ZH, Wang CX, Sun D, et al. Inorg Chem 2014;53:12337–47.
- [18] Bai Y, Zhang GQ, Dang DB, Ma PT, Gao H, Niu JY. CrystEngComm 2011;13:4181–7.
- [19] Li SZ, Ma PT, Wang JP, Guo YY, Niu HZ, Zhao JW, et al. CrystEngComm 2010;12:1718–21.
- [20] Kim S, Park H, Choi W J. Phys Chem B 2004;108:6402-11.
- [21] Guo J, Yang J, Liu YY, Ma JF. Inorg Chim Acta 2013;400:51–8.
- [22] Xia Y, Wu PF, Wei YG, Wang Y, Guo HY. Cryst Growth Des 2005;6:253–7.
- [23] An B, Zhou RM, Dang DB, Wang JL, Pan H, Bai Y. Spectrochim Acta A Mol Biomol Spectrosc 2014;122:392–9.
- [24] Tan B, Xie ZL, Huang XY, Xiao XR. Inorg Chem Commun 2011;14:1001-3.
- [25] Wang YL, Fu JH, Jiang YL, Fu Y, Xiong WL, Liu QY. CrystEngComm 2012;14:7245–52.